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INTRODUCTION 

In the late 1950's Norbert Wiener became interested in the spectrum of human brain 
waves (Wiener 1958, 1961). Along with his medical collaborators, he made high-
resolution electroencephalographic recordings from subjects who were awake but resting 
with their eyes closed. Under these conditions, the electroencephalogram shows con-
spicuous activity at frequencies around 10 Hz - the so-called alpha rhythm. 

Figure 1 shows Wiener's sketch of the magnified spectrum around 10 Hz. He writes: 

It would have been quite conceivable that there would not be a phenomenon 
of that sort; i.e., it might have been that all our work on the fine structure of 
the brain waves was wasted. However, once we find this effect, we are under 
an obligation to try to give an explanation of it. There are two things that 
are striking here: One is the very narrow line at the center of the spectrum, 
and the other is that this line arises from a dip. 

To explain this spectrum, Wiener hypothesized that there is a population of oscillators 
in the brain whose intrinsic frequencies are close to 10 Hz and that these oscillators 
"constitute a more accurate oscillator en masse than they do singly." The idea is that 
the oscillators interact by pulling on each other's frequencies - if an oscillator is ahead 
of the group, the group tends to slow it down. If it is going too slowly, the group 
tends to speed it up. In this way the population of oscillators can achieve a collective 
enhancement of precision. 

10 Frequency (Hz) 

Fig.!. Wiener's schematic sketch of the spectrum of human alpha waves, redrawn from Wiener (1958, p.69). 
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Wiener (1958) tried to support his notion of frequency-pulling with the experimental 
evidence available in those days. For instance, he mentions an amazing experiment 
involving direct electrical driving of the brain. A sheet of tin was suspended from the 
ceiling and connected to one terminal of a 400-volt, 10 Hz generator. He writes that 
this apparatus "can produce electrostatic induction in anything in the room" and that 
"it can actually drive the brain, causing a decidedly unpleasant sensation." (!) 

It is probably wise to take Wiener's experimental claims with a grain of salt. He rarely 
shows or cites actual data - Fig. 11 in Wiener (1961) is the lone exception - and as far as 
I know, no one has ever replicated his results. Wiener (1958) also attempted to account 
for his observations mathematically, but his approach was awkward and led nowhere. 
However, he did leave an important legacy: he was the first to propose studying the 
collective behavior of biological oscillators. 

In the years since Wiener's work, it has become clear that mutual synchronization is 
ubiquitous in biology (Winfree 1967, 1980, 1987). Examples include pacemaker cells 
in the heart (Peskin 1975; Michaels et. al 1987), glycolytic synchrony in yeast cell 
suspensions (Ghosh et. al 1971; Aldridge and Pye 1976), collective oscillations of pan-
creatic beta cells (Sherman and Rinzel 1991), synchronously flashing fireflies (Buck 
1988), crickets that chirp in unison (Walker 1969) and women whose menstrual cycles 
become mutually synchronized (McClintock 1971). We review some of these examples 
in Sect. 2, and then in Sect. 3 we consider the classic model of mutual synchronization. 
The analysis of this model over the past twenty-five years has drawn on a wonderful 
range of subjects: nonlinear dynamics of course, but also statistical mechanics and even 
plasma physics! As we'll see, Norbert Wiener's spectrum has almost been explained in 
a mathematical sense - but not quite. Many other tantalizing problems remain for both 
theory and experiment, as discussed in Sect. 4. 

2. BIOLOGICAL EXAMPLES 

2.1 Menstrual Synchrony 

Everyone has heard of the phenomenon of synchronized menstrual cycles among women 
friends or roommates (Anonymous 1977). The first scientific study of menstrual syn-
chrony was carried out by Martha McClintock (1971) while she was an undergraduate 
psychology major at Radcliffe in the late 60's. She studied 135 women undergraduates 
and had them keep records of their periods throughout the school year. In October, 
the cycles of close friends and roommates started an average of 8.5 days apart, but by 
March, the average spacing was down to five days, a statistically significant change. 
Randomly matched pairs of women showed no such change. 

There are various ideas about the mechanism of synchronization, but the best guess 
is that it has something to do with sweat! Apparently there's some (unknown) sub-
stance in sweat that conveys a synchronizing signal. The evidence for this comes from 
an experiment by Michael Russell (1980). A colleague of his, Genevieve Switz, had 
noticed the synchrony effect in her own life - when rooming with a female friend of hers 
during the summer, the friend's period would lock on to hers, then drift apart after 
they separated in the fall. This suggested that Genevieve was a powerful entrainer. 
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Russell tried to determine what it was about Genevieve that was so compelling. For 
the experiment, Genevieve wore small cotton pads under her arms and then donated 
the accumulated sweat to Russell each day. He then mixed it with a little alcohol and 
dabbed this "essence of Genevieve" on the upper lip of female subjects, three times a 
week for four months. 

The results were startling: after four months, the subjects' periods began an average of 
3.4 days apart from Genevieve's, down from 9.3 days at the beginning of the experiment. 
In contrast, the cycles of a control group (whose upper lips were dabbed with alcohol 
only) showed no significant change. Evidently something in Genevieve's sweat conveyed 
information about the phase of her menstrual cycle, in such a way that it tended to 
entrain the cycles of the other women who got wind of it. 

Now I know that this all sounds unbelievable, even more so because Genevieve's last 
name seems phony - doesn't Switz remind you of the German word for "sweat"? Any-
way, this is what has been reported. 

2.2 Fireflies 

In the animal world, groups of Southeast Asian fireflies provide a spectacular example 
of synchronization. Along the tidal rivers of Malaysia, Thailand and New Guinea, 
thousands of fireflies congregate in trees at night and flash on and off in unison. When 
they first arrive, their flickerings are uncoordinated. But as the night goes on, they 
build up the rhythm until eventually whole treefuls pulsate in silent concert. You can 
see this display on David Attenborough's (1992) television show The Thais of Life in 
the episode called "Talking to Strangers." As he explains, "All those that are flashing 
are males, and their message, of course, is directed to the females, and it's a very 
simple one: 'Come hither - mate with me'." The evolutionary significance of this group 
synchrony is controversial; see Buck (1988) for a review of the various theories, and for 
more information about synchronous fireflies. 

The fireflies use visual information to achieve entrainment - they see each others' flashes 
and adjust their rhythm accordingly - but the details differ across species. These 
differences can be probed by flashing a light periodically at an individual firefly, and 
measuring the timing of its flashes as it tries to get in step. For driving frequencies 
close to its natural frequency, the species Pteroptyx cribellata can phase-lock but with 
a non-zero phase difference; it lags a faster stimulus and leads a slower one (Hanson 
1978). In contrast, the grandmaster of synchronization, Pteroptyx malaccae, can match 
both frequency and phase. It manages to flash almost simultaneously with the stimulus, 
even if the driving frequency differs by up to 15% from its natural frequency (Hanson 
1978; Buck 1988). This suggests that the firefly can "learn" the frequency of the driver. 
This idea is further supported by the observation that when the drive is turned off, the 
firefly continues to flash at that frequency for several cycles before relaxing back to its 
native frequency (Ermentrout 1992). 

2.3 Yeast and Gonyaulax 

Much simpler creatures, all the way down to unicellular organisms, are also capable of 
mutual synchronization. For example, suspensions of yeast cells can exhibit synchronous 
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sugar metabolism. Normally yeast cells convert sugar to alcohol in a steady trickle, but 
under contrived laboratory conditions, they can be made to exhibit glycolytic oscilla-
tions with a period around 30 seconds (Ghosh et. al 1971; Winfree 1980, 1987). The 
oscillations can be monitored optically, because one of the metabolic intermediates con-
veniently fluoresces under ultraviolet light. In a beaker full of thousands of such cells, 
the oscillations occur in rigid lockstep. It is thought that the cells communicate chem-
ically through diffusion of acetaldehyde, pyruvate, or some other substance. To gain 
further information about the coupling, Ghosh et. al (1971) mixed two different beakers 
of cells, synchronous within themselves but differently phased from each other. They 
found that the mixture rapidly re-established synchrony, but at a compromise phase 
that depended in a subtle way on the parent phases. See (Winfree 1980, 1987) for a 
topological discussion of the resetting map. 

To be honest, we should mention that in many populations of biological oscillators, 
the coupling is insufficient to enforce synchrony, or it may actively oppose synchrony 
(Winfree 1967). The cells in our bodies are undergoing asynchronous cell division all 
the time, and in spite of what the song says about "two hearts that beat as one," there 
are no documented cases of mutual cardiac entrainment. 

But these failures may be too extreme - it is more interesting to consider populations 
that barely miss achieving synchrony. One such example is the bioluminescent alga 
Gonyaulax, which lights up as you swim through it at night in southern California and 
elsewhere. If a tank full of Gonyaulax is brought from the ocean and then kept in con-
stant darkness in a laboratory, it exhibits a circadian glow rhythm with a period close to 
23 hours. However, this rhythm gradually damps out and the waveform broadens as the 
days go by. Njus et. al (1984) argued that this broadening is due to desynchronization 
- the individual cells continue to oscillate but they drift out of phase, either because 
of differences in their natural frequencies or because of cycle-to-cycle variability within 
each individual. Furthermore, when one tries the analog of the yeast mixing experiment 
on this organism, the ingredient populations maintain their identities for over a week, 
though there's some indication of mutual influence in the second week (Hastings et. al 
1985). 

3. THE CLASSIC MODEL 

3.1 Winfree's Work 

In his first publication (1967), Art Winfree proposed the theoretical approach that 
still guides us today. Like Wiener, he explored large systems of coupled oscillators. 
Of course, such systems had been studied for decades in physics, but Winfree recog-
nized that the biological problem required a new set of assumptions. In many-body 
physics, the oscillators are usually conservative and identical; in biology, the oscillators 
are self-sustained and non-identical. By "self-sustained" we mean that each oscillator 
has a stable limit cycle, corresponding to the individual's free-running oscillation. This 
assumption is appropriate because biological oscillators generally regulate their ampli-
tude - if perturbed, they return to a standard cycle, whereas conservative oscillators 
would remember such perturbations forever. Moreover, biological oscillators are never 
identical, thanks to genetic variability, etc. 
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So to achieve even minimal biological realism, one needs to study a population of coupled 
limit-cycle oscillators with randomly distributed properties. As stated, this problem is 
too hard. Winfree (1967) pointed out that the problem would simplify if the oscillators 
were weakly coupled (compared to the attractiveness of their limit cycles). Then the 
oscillators would never move far from their limit cycles, so each could be described solely 
in terms of its phase along the cycle. Thus, Winfree invented what is known today as 
the "phase model" approximation. Two other important simplifications: (i) He assumed 
that the intrinsic frequencies were distributed at random across the population, but that 
the oscillators were identical in all other respects. (ii) Each oscillator was assumed to 
be influenced by the collective rhythm produced by all the others. For example, in the 
case of fireflies this means that each firefly responds to the collective flash of the whole 
population, rather than to any individual firefly. Mathematically, this amounts to a 
mean-field approximation, which is always the simplest place to start when analyzing a 
new many-body system (Ma 1985). 

Through numerical and analytical studies, Winfree discovered that synchronization oc-
curs cooperatively, in a manner strikingly reminiscent of a thermodynamic phase tran-
sition. When the spread of natural frequencies is large compared to the coupling, the 
oscillators behave incoherently, with each running at its natural frequency. As the 
spread is decreased, the population remains incoherent until, below a critical spread, 
the system spontaneously "freezes" into synchrony. 

3.2 Kuramoto's Model and Analysis 

The analogy between synchronization and phase transitions stimulated a great deal 
of interest among statistical physicists. In particular, Yoshiki Kuramoto (1975, 1984) 
proposed a beautiful and analytically tractable model based on Winfree's ideas. The 
peculiar spectrum (Fig. 1) found by Wiener (1958) pops out of the analysis, as does a 
formula for the synchronization threshold discussed by Winfree (1967). But beware -
Kuramoto's analysis is like many of the best arguments of physics: bold, ingenious, but 
far from rigorous. Indeed, it raises conceptual subtleties that are still not understood, 
as we'll discuss later. 

Kuramoto considered the following system: 

(1) 

where i = 1,···, N. Here Oi(t) is the phase of the oscillator i, K 2: 0 is the coupling 
strength, and the natural frequencies Wi are distributed according to a probability den-
sity g(w). The sinusoidal coupling tends to synchronize the oscillators; if OJ is slightly 
ahead of Oi, the sine term tends to speed Oi up and slow OJ down. Thus the oscillators 
pull on each other's frequencies in the way envisaged by Wiener (1958). Each oscillator 
is coupled to all the others with a strength of KIN, where the factor liN ensures that 
the system has a non-trivial limiting behavior as N ---> 00. 

The probability density g(w) is assumed to be unimodal and symmetric about a mean 
frequency 0, i.e., g(O + w) = g(O - w). From now on we assume that 0 = 0; otherwise 
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we may redefine all phases by ()i ()i + nt. This leaves (1) invariant, but effectively 
subtracts n from all the Wi, and therefore shifts the mean of g(w) to zero. Physically 
this corresponds to going into a rotating frame at the mean frequency. The advantage is 
that phase-locked solutions with frequency n in the original frame now appear as fixed 
points in the rotating frame. 

To visualize the dynamics of (1), imagine a swarm of points moving around the unit 
circle in the complex plane. It's convenient to introduce the centroid of the swarm, 
given by 

(2) 

as shown in Fig. 2. Here r 2: 0 measures the phase coherence of the oscillators, and W is 
the average phase. Notice that r ;::::; 0 if the oscillators are randomly spread around the 
circle and r ;::::; 1 if they're nearly in phase. Therefore r is called the "order parameter" 
for the system. 

Fig. 2. Geometric interpretation of the order parameter. The phases OJ are plotted as points on the unit 

circle. Their centroid is given by the complex number re ilJl • shown as an arrow. 

If we integrate (1) numerically, how does r(t) evolve? For concreteness, suppose that 
g(w) is a Gaussian or some other density with infinite tails. Then for all K less than 
a certain threshold K c , the oscillators act almost as if they were uncoupled: for any 
initial condition, r(t) decays to a jitter of size O(N- 1/ 2 ), reflecting incoherent motion 
of the ()i (Fig. 3). 
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Fig. 3. Typical evolution of r(t) seen in numerical integrations of (1). 

But when K exceeds K c , incoherence becomes unstable and r(t) grows exponentially, 
indicating the onset of spontaneous synchronization (Fig. 3). Ultimately r(t) saturates 
to some final value roo, though again with fluctuations of size O(N- 1/ 2 ). At the level 
of the individual oscillators, one finds that those near the the center of the distribution 
have mutually synchronized, whereas those in the tails remain wild and run near their 
natural frequencies. With further increases in K, more and more oscillators are recruited 
into the synchronous pack, and roo grows as shown in Fig. 4. 

1 --------

K 

Fig.4. Dependence of steady-state coherence roo on coupling strength K. A continuous phase transition 

occurs at K = K co 

Kuramoto's analysis begins with the observation that, thanks to a trigonometric iden-
tity, (1) can be rewritten in terms of the centroid as 

Bi = Wi + Krsin(\II - Bi ), (3) 

for i = 1,···, N. In the limit N ----+ 00, numerical simulations suggest that r(t) always 
approaches a constant as t ----+ 00. Moreover, in our rotating frame, \II(t) also seems to 
approach a constant. Here comes the first bold move: seeks solutions of (3) for which 
both r and \II are constant. Without loss of generality, we may choose coordinates such 
that \II = o. 
Then (3) has two types of solution, depending on the relative size of Wi and Kr. If 
IWil Kr, then (3) has a stable fixed point at B defined by 

Wi = KrsinBi , (4) 
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for 10il :::; 7r /2. These oscillators will be called "locked" because in the original frame 
they are phase-locked at frequency n. On the other hand, the oscillators with IWi I > K r 
run around the circle periodically, hesitating at some phases and accelerating at others; 
they are called the "drifting" oscillators. As expected, the locked oscillators correspond 
to the center of the frequency distribution, while the drifting oscillators correspond to 
the tails. 

Now comes the crux of the matter: the existence of drifting oscillators seems to be incon-
sistent with the assumption that the order parameter (2) is time-independent. How can 
r be constant with all those oscillators buzzing around the circle? Kuramoto sidestepped 
this problem with a second bold move: he demanded that for each w, the oscillators of 
that frequency form a stationary distribution p( 0, w) on the circle. Then even though 
individual oscillators continue to move, the centroid of the system stays constant. For 
stationarity, p( 0, w) must be inversely proportional to the velocity; oscillators bunch up 
at slow places on the circle and spread out at fast places. Hence 

c 
p(O,w) = I K' 01 w- rsm 

(5) 

The normalization constant C is determined by D1'f P(0,w)dO = 1 for each w, which 
yields C = (27r)-1(W2 - K2r2)1/2. 

Next we invoke a self-consistency condition: the constant r assumed throughout must 
be consistent with that implied by (4, 5). Since 1¥ = 0, the consistency condition is 
r = (ei6), where the brackets denote an average over the population. This average 
contains two separate contributions rlock and TdriJt, which we calculate in turn. As 
N --+ 00, the law of large numbers implies 

rlock --+ i:r exp[iO(w)]g(w)dw, 

where O(w) is defined implicitly by (4). The imaginary part of this integral vanishes 
because sinO(w) is odd in w, whereas g(w) is even by assumption. Hence 

j Kr 

rlock = cosO(w)g(w)dw. 
-Kr 

Changing variables from w to 0 yields 

j 1'f/2 
rlock = cosOg(KrsinO)KrcosOdO 

-1'f/2 

j 1'f/2 
= Kr cos20g(KrsinO)dO. 

-1'f/2 
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Now consider the drifting oscillators. They contribute 

rdrift = J7r ( cosOp(O,w)g(w)dwdO. -7r J1wl>Kr 

Miraculously this integral vanishes! This follows from g(w) = g(-w) and the symmetry 
p(O + 7r, -w) = p(O,w) impled by (5). 

Hence r = rlock and so the self-consistency condition reduces to 

r = KrJ7r cos20g(KrsinO)dO. 
-7r/2 

(6) 

Equation (6) has a trivial solution r = 0 for all values of K. This corresponds to a 
completely incoherent state, with the oscillators of each frequency uniformly distributed 
around the circle and rotating at their natural frequencies. A second branch of solutions 
is defined implicitly by 

1 = KJ7r/2 cos20g(KrsinO)dO 
-7r/2 

(7) 

where r 2: O. This branch corresponds to partially synchronized solutions. It bifurcates 
continuously from r = 0 at a value K = Kc obtained by letting r 0 in (7). Thus 

Kc = 2/7rg(0), 

which is Kuramoto's exact formula for the synchronization threshold. Moreover, by 
expanding the integrand in (7) in powers of r, we find r ex (K - Kc)1/2 close to Kc. 
(Here we're assuming g"(O) < 0, which is generic for unimodal, even densities g(w). 
For the special case g(w) = (r/7r)("(2 +w2)-I, Kuramoto finds that r = 1- (Kc/K) 
for all K 2: Kc. These formulas are in excellent agreement with numerical results 
(Sakaguchi and Kuramoto 1986). 

An idealized version of Wiener's spectrum (Fig. 1) also emerges from this analysis. 
The corresponding quantity in the model is the density of modified frequencies G(w), 
where w differs from w because of frequency pulling. The locked oscillators all have 
w = 0 (or w = n in the original frame). They produce a delta function in G(w), 
analogous to the sharp central peak in Wiener's spectrum. The drifting oscillators have 
w = ±(w2 - K 2r2)1/2. They satisfy IG(w)dWl = Ig(w)dwl, and therefore 
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Fig. 5. The density G( OJ) of coupling-modified frequencies, as predicted by Kuramoto's model. Compare 

Wiener's sketch in Fig. 1. 

for Iwl > Kr. Thus G(w) is proportional to Iwl as w ---> 0, and G(w) g(w) as Iwl ---> 00. 

Hence G(w) has the shape shown in Fig. 5. 

3.3 Afterthoughts 

The intuitive leaps in Kuramoto's analysis deserve our admiration, but they have also 
provoked some vigorous head-scratching. For example, what is one to make of Ku-
ramoto's assumption that r is constant? Surely this can never be strictly true if N 
is finite, but in some sense it must be approximately true for large N - yet in what 
sense? The theorem must be something like this: For most initial conditions, for most 
realizations of the w's, and for a large fraction of the time, r(t) stays within O(N- 1/ 2 ) 

of the constant roo(K) given by Kuramoto's analysis. It's an open problem to make 
this precise. 

The issue could be difficult - as Nancy Kopell has pointed out, it may be connected 
to questions about the foundations of statistical mechanics, irreversibility, Poincare 
recurrence, etc. (Keller and Bonilla 1986). To see why, consider the simple case of 
uncoupled oscillators (K = 0). Then for almost all realizations of the w's, the phases 
evolve under irrational flow on an N-torus. Hence r(t) should be O(N-l/2) most of the 
time, but a few times during the life of the universe, r(t) will blip up to r 1, because 
the orbit is dense on the torus and therefore eventually comes close to the in-phase 
state. Would an analogous form of Poincare recurrence occur if K -I- O? Or is the 
recurrence peculiar to the special value K = 0, at which the system suddenly acquires 
a Hamiltonian structure? 

Another subtle issue about finite N concerns the amplification of fluctuations for K 
Kc. Such fluctuations have been addressed by Kuramoto and Nishikawa (1987) and 
Daido (1990), but the matter is far from resolved. 

Even at the formal level of infinite-N, there are mysterious aspects to Kuramoto's 
analysis. What exactly is the dynamical system being studied - where did the density 
p(e,w) come from? And what about the stability of the incoherent (r = 0) and partially 
synchronized (r > 0) states? Numerics indicate that r = 0 is globally stable for K < K c , 

and unstable for K > K c , while the partially synchronized state appears to be globally 
stable for K > Kc. How can one approach these stability questions analytically? 

Recently there's been some encouraging progress. Rennie Mirollo and I have found a 
natural infinite-dimensional analog of Kuramoto's model (Mirollo and Strogatz 1991). 
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It's an evolution equation for the density p(B, t, w) of oscillators at phase B at time t, 
for each natural frequency w. The equation is 

where 

op o(pv) _ 0 
ot + oB - , 

v (B, t, w) = w + K 1: 1: sin(¢ - B)p(¢, v, t)g(v)dvd¢ . 

(8a) 

(8b) 

Equation(8) expresses conservation of oscillators of frequency w. The velocity v follows 
from the law oflarge numbers applied to (1). Seen in this light, we can now say precisely 
what Kuramoto accomplished: he found the fixed points, i.e., the stationary densities 
for (8). 

Local stability questions can now be addressed by straightforward linearization (Mirollo 
and Strogatz 1991). Yet when this is done for the incoherent state Po == 1/27f, the results 
are very surprising: Po is unstable for K > K e , but neutrally stable for all 0 < K < K e . 

It's odd to find neutral stability for a whole interval of parameters. In the analysis, one 
encounters spectra like those shown in Fig. 6. Above K e , there's a continuous spectrum 
on the imaginary axis, and a single discrete real eigenvalue >. > o. As K Kt, >. 
moves left, gets absorbed in the continuous spectrum, then disappears! Below K e , the 
spectrum is purely continuous and imaginary. 

continuous 
spectrum -----...... 

ImA 
discrete 

/ spectrum 

ReA 

(a) K > Kc 

ImA 

ReA 

Fig.6. Spectrum for linearization of (8) about the incoherent state Po. (a) K> Kc: Po is unstable. thanks 

to the discrete eigenvalue A > o. (b) K K c: Po is neutrally stable. 

Even more bizare, numerical integration for K < Ke shows that r(t) decays approxi-
mately exponentially at first - despite the fact that there are no negative eigenvalues! 
This damping can be explained by an analytic continuation argument (Strogatz et. al 
1992). It is closely related to "Landau damping", a phenomenon first predicted and 
later confirmed experimentally in the context of plasma physics (Landau 1946; Infeld 
and Rowlands 1990). Similar phenomena arise in fields ranging from atomic physics 
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to fluid mechanics - the common feature is the presence of a linear operator with a 
continuous spectrum {Crawford and Hislop 1989}. 

From Wiener's brain waves to Landau's plasmas, by way of Winfree's biological rhythms 
and Kuramoto's statistical mechanics - the analysis of mutual synchronization has re-
vealed some unexpected connections among different branches of science. 

4. THE FUTURE 

4.1 Needed Experiments 

After three decades of research, the study of mutual synchronization is prospering theo-
retically, but like many branches of mathematical biology, it has wandered too far from 
its source. There has been no serious confrontation between theory and experiment. We 
need to follow the example of two related fields: excitable media and central pattern 
generators. The theory of excitable media has developed alongside experimental work 
on spiral and scroll waves in the Belousov-Zhabotinsky reaction; see the papers by Tyson 
{1994} and Winfree {1994} in this volume. Similarly, Ermentrout and Kopell's theory 
of phase-locking in chains of oscillators {Kopell and Ermentrout 1986; Kope1l1988} has 
been directly motivated by experiments on the central pattern generator of lamprey, an 
eel-like creature, and has led to some surprising predictions that were recently verified 
by their experimental collaborators {Sigvardt et. al1992}. 

So what experimental system could be our lamprey? Menstrual synchrony is unpromis-
ing; it takes a month for each data point. Circadian rhythms are a bit better, but it's 
often hard to locate or characterize the individual microscopic oscillators. Fireflies have 
a much more convenient timescale, but you have to go to Malaysia to measure them. 
Still, they have many virtues: it's easy to measure the rhythm of an individual firefly over 
many cycles, and to characterize its mean frequency, cycle-to-cycle variability, response 
to light pulses, etc. By measuring many individuals separately, one could perhaps esti-
mate the distribution of frequencies and coupling strengths across the population. Most 
of these remarks apply also to yeast cells, which have the further advantage that they 
show some experimental indication of phase transitions to and from synchronization as 
the dilution factor is varied {Aldridge and Pye 1976}. Another promising system is the 
pacemaker organ in the brain of weakly electric fish. This neural oscillator is the most 
precise biological clock known {Bullock 1970} - it produces a high-frequency sinusoidal 
oscillation which is as precise as a quartz wristwatch, with a frequency that varies from 
cycle to cycle by about 1 part in 104 . Recent experiments suggest that the coupling 
among the pacemaker cells can be altered by administering appropriate chemicals {Dye 
1991}. 

But I suspect that mutual synchronization is going to be co-opted by physics, where the 
oscillators are closer to those imagined in our theories. There have already been some 
exciting applications to charge-density waves {Fisher 1985; Strogatz et. al1989} and to 
arrays of microwave oscillators {York and Compton 1991} and superconducting Joseph-
son junctions {Hadley et. al 1988; Tsang et. al 1991; Benz and Burroughs 1991}. On 
second thought, perhaps "co-opted" is not the right word, since mutual synchronization 
began in physics, with Huygens' {1665} discovery of phase-locking between two pendula 
hung on the same board. 
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4.2 Theory 

Let's now consider the future prospects for the theory of mutual synchronization, and 
coupled oscillators more generally. There are at least two promising strategies. The first 
is to study the detailed bifurcation structure of small systems of two or three oscillators, 
using qualitative methods and numerical bifurcation packages. Recent work in this vein 
(Aronson et. a11990) shows that even two coupled oscillators can produce dynamics of 
bewildering complexity. 

The second approach is to study enormously large systems of oscillators, with the aim 
of focusing on collective behavior. Almost all the existing theoretical work in this area 
is based on smooth phase-only oscillators coupled in extremely simple ways (all-to-all 
or in a one-dimensional chain). Relaxing any of these assumptions will lead to new 
problems. 

For example, we know very little about discrete sets of oscillators in two and three 
dimensions. Pure synchrony is probably rare - we're more likely to find spiral and 
scroll waves, vortices and defects, new forms of turbulence, and so on. And how is the 
simple mean-field picture of phase transitions modified in these locally coupled systems? 
Perhaps renormalization group methods can be extended to such cases. See (Daido 1988; 
Strogatz and Mirollo 1988) for examples and references. 

We should also move beyond the phase model to more complicated kinds of oscillators. 
Recent work shows that when amplitude variations are permitted, new phenomena 
arise even in mean-field theory. For instance, the order parameter r(t) can exhibit 
periodic, quasiperiodic, or chaotic behavior (Matthews and Strogatz 1990; Matthews 
et. aI1991). This result was obtained for limit-cycle oscillators with weak nonlinearity 
- in contrast, virtually nothing is known about populations of relaxation oscillators. 
There are recent indications that they may have superior synchronization properties 
(Mirollo and Strogatz 1990; Somers and Kopell 1993). 

The resetting properties of oscillator populations remain to be explored. Winfree (1980) 
has discussed populations of independent oscillators all reset by the same stimulus - but 
what if these oscillators are coupled? A theory here might provide a better understand-
ing of the phase-response curves that are often measured experimentally by circadian 
biologists. 

Finally, how can one use oscillator networks to compute, learn, or recognize patterns? 
This subject should appeal to people caught up in the current excitement about neural 
networks. Abbott (1990) has taken a first step in this direction. The recent observation 
of stimulus-induced synchronization in the visual cortex (Gray et. a11989) has spawned 
several theories involving oscillator networks (Singer and Schuster 1991), though there's 
still uncertainty about the biological significance of the experimental observations (Crick 
and Koch 1990; Stryker 1989). But in any case, Norbert Wiener would be pleased to 
see that we're thinking about oscillators in the brain again. 
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