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We study a set of N globally coupled ordinary differential equations of the form encountered in circuit analysis of 
superconducting Josephson junction arrays. Particular attention is paid to two kinds of simple time-periodic behavior, known 
as in-phase and splay phase states. Some results valid for general N, as well as further results for N = 2 and N + m, are 
presented; a recurring theme is the appearance of very weak dynamics near the periodic states. The implications for 
Josephson junction arrays are discussed. 

1. Introduction 

The nonlinear dynamics of coupled oscillators 
has generated increasing attention over the last 
several years. Such systems arise naturally in the 
context of both biology [l-5] and physics [6-211. 
The behavior of even a single nonlinear oscillator 
can be enormously complicated; the situation for 
N such elements is bound to be much worse. 
However, in many applications, the interest is in 
temporally simple behavior, with all elements os- 
cillating with the same frequency (or nearly so). 
Often, the main question is whether the ensem- 
ble of oscillators will synchronize or not; more 
generally, one wishes to determine the conditions 
which enhance the tendency to synchronize. 

In this paper, we study a particular set of 
ordinary differential equations, describing the dy- 
namics of N identical oscillators. The motivation 
for studying these equations grew out of ongoing 
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work on series arrays of Josephson junctions, 
which are superconducting electronic devices ca- 
pable of generating extraordinarily high fre- 
quency voltage oscillations, up to 1011 Hz or 
more. In such devices, it is particularly desirable 
that the elements oscillate perfectly in phase, i.e. 
in perfect synchrony, in order that the power 
output reaches practically useful levels. Numeri- 
cal studies of the Josephson arrays indicated that 
stable in-phase operation is possible; however, 
the degree of stability has been observed to de- 
pend greatly on the circuit geometry and the type 
of load used [lo]. In order to get a better analyti- 
cal understanding of the stability properties of 
Josephson arrays, we decided to write down a 
prototype model which retained the essential 
symmetry and coupling of the more complicated 
circuit equations: 

y&k 
N 

dt 
= 0 + a sin4, + k C sin 4, 

j=l 
(1) 

for k = 1,2,. . . , N. One important feature of these 

0167-2789/91/$03.50 0 1991- Elsevier Science Publishers B.V. (North-Holland) 



KY. Tsang et al. /Dynamics of a globally coupled oscillator array 103 

equations is the presence of “global coupling”, 
wherein each oscillator is coupled with equal 
strength to all others. At first glance, this may 
seem to be an artificial coupling, but it arises 
quite naturally in (at least) two physical contexts. 
In fact, eq. (1) can be derived for a particular 
choice of Josephson junction circuit - as we show 
in section 2. Having said this, we emphasize that, 
for the purposes of the present paper, our inter- 
est is to gain as complete an understanding of eq. 
(1) as possible, including the limit of very large N. 

The contents of this paper are as follows. In 
the next section, we give a general discussion of 
how globally coupled dynamics can arise in the 
description of physical systems, and then show in 
detail the relation of eq. (1) to a specific Joseph- 
son array circuit. We also define the in-phase and 
splay-phase periodic states observed in those cir- 
cuit equations. In section 3, we present results 
valid for general N, concerning the stability prop- 
erties of both in-phase and splay periodic orbits, 
which follow solely from the symmetries of the 
governing equations. Section 4 examines more 
specifically the case of N = 2: for some range of 
parameter values, the phase space divides into 
two parts, one part attracting to a sink, the other 
filled (foliated) with a continuous family of neu- 
trally stable periodic orbits. This structure is due 
to a kind of time-reversibility of the dynamical 
system. In section 5, we analyze the splay states 
in the limit of N + m; finally, we discuss some of 
the more intriguing aspects of the observed dy- 
namics, as well as the relevance of these results 
for other oscillator arrays (in particular for 
Josephson junction arrays) in section 6. 

2. Globally coupled arrays 

In general, the basic structure of the governing 
equations plays an important part in the observed 
dynamics. This is especially true for the system 
studied in this paper. Eq. (1) possesses a high 
symmetry, owing to the fact that (i) the array 
consists of identical elements, and (ii) the cou- 

pling is global. This kind of coupling is most 
familiar to physicists within the context of “mean 
field theories” of statistical mechanics. In such 
mean field treatments, the coupling term repre- 
sents a convenient approximation to the true 
underlying dynamics, which might, for example, 
take the form of a sum restricted to nearest 
neighbors. However, the appearance of global 
coupling does not always arise as the result of an 
approximation. Rather, it can happen that it cor- 
rectly describes the relevant physical interactions 
between elements. This is the case in at least two 
examples we know of. The first case is that of 
multimode lasers in which the longitudinal modes 
are coupled via an intracavity nonlinear crystal 
[22-241. Here, the individual degrees of freedom 
are the intensities of the different lasing modes 
Z,, and their coupling arises from the dissipation 
of energy caused by the crystal, which converts 
the lower-frequency photons (“red light”) into 
higher-frequency photons (“green light”). This 
coupling is global, since the crystal interacts with 
the total amount of incident red light. Thus, each 
mode variable Zk obeys a rate equation which 
contains a loss term proportional to Cl,. 

The second case where global coupling arises 
naturally is for certain array electrical circuits 
whose dynamics can be described using the ele- 
mentary “lump circuit” laws of Kirchhoff. In par- 
ticular, consider the circuit schematic of fig. 1, 
which shows an array of N identical elements in 

R 

B 
Fig. 1. Circuit schematic of a Josephson junction series array, 
subject to a parallel resistive load. Each cross represents a 
Josephson element. 
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parallel with a single resistor, and a constant 
current source [25, 261. The source current B 
splits into two pieces, some flowing through the 
array Ik, and the rest through the load resistor 
I,: 

I,+I,=B, (2) 

a relation which is true for each element k = 

1 ,..., N. Meanwhile, the total voltage drop across 
the array- which is just the sum of the voltage 
drops across each element-is equal to the total 
voltage across the resistor: 

j=l 

In general, the array elements are characterized 
by some current-voltage relation, say V, =f(I,), 
where f may be a differential or integral opera- 
tor. Together with (2) and (3) this yields: 

Ik+& ;f(l,)=B. 
j=l 

One sees that the appearance of global coupling 
is the result of very simple considerations. (There 
are other circuit topologies which can lead to 
global coupling; naturally, there are circuit 
topologies that lead to different forms of cou- 
pling, as well.) 

A single Josephson junction can be repre- 
sented by two elements in parallel: an ideal junc- 
tion which carries the supercurrent IJ, and a 
small resistor r which carries the normal current 
I,. (For one class of Josephson junction - so-called 
tunnel junctions- one includes a capacitance as 
well.) Thus, I, = IJk + I,, is the current conserva- 
tion law for the kth element. The current-volt- 
age relation for the ideal junction is usually 
represented via an intermediate variable 4. (4 
represents the jump in the phase of the macro- 
scopic quantum wavefunction across the junction 
gap.) Specifically, the supercurrent and voltage 

across the k th junction are given by 

I,, = I, sin fpk, 

A d4,c 
V,=2edt’ 

k=l,..., N, where A is Planck’s constant divided 
by 2~, e is the electron charge, and 1, is the 
critical current, a material-dependent parameter 
characterizing the Josephson junctions. Of course, 
the current I,, across the junction resistor is just 
V,Jr, so that the left side of (2) becomes the sum 
of three terms: 

I, sin t$k + V,/r + IL = B. (6) 

Combining (31, (51, and (6) yields 

I,sin$x+z7ii-+&C$=B. 
h d4k 

(7) 
i 

If we sum (7) over all k, and use this result to 
eliminate the summation appearing in (71, we get 

h R,+r d4k 
%I,r2 dt 

BRO R,+r N 

=--__ 

*cr r sin+,+ k C sin4,,, (8) 
j=l 

where R, = R/N. A simple resealing of time 
eliminates the coefficient on the left side. If we 
make the definitions: 0 = BR,/I,r and a = 
-CR, + r-)/r, eq. (8) takes the form of eq. (11, as 
claimed. Note that a < 0 for ordinary resistors. 

In the remainder of this paper, we will study 
the properties of eq. (11, without paying specific 
attention to its relationship with the circuit of fig. 
1. Although many results will carry over, we note 
in particular that certain ranges of the u-0 pa- 
rameter plane correspond to negative resistance 
R. In this paper, we are primarily interested in 
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eq. (1) as an example of a globally coupled oscil- 
lator array. 

In both the study of Josephson junction arrays 
and the multimode laser problem, the governing 
array equations reveal solutions spanning the 
range from the very simple to the chaotic. For 
practical purposes, one is most interested in peri- 
odic solutions. In particular, two kinds of periodic 
solutions have received special attention. The first 
is the in-phase state, in which all the oscillators 
are perfectly synchronized and in lock step: 

&(t) = do(t) f or all k. The second type is what 
we shall call the “splay-phase” state, in which all 
oscillators have the same waveform, but are 
shifted by a fixed fraction of a wavelength: 
+k(t) = c&,(t + kT/N), where T is the oscillation 
period. (These “splay states” have been called 
“antiphase states” [25, 261 and “ponies on a 
merry-go-round” [27, 281 in other work on 
Josephson junction arrays; in numerical studies of 
the multimode laser equations, these are the “left 
waltz” and “right waltz” solutions described by 

James et al [23, 241; in electrical analog simula- 
tions of van der Pol oscillators, these were called 
“rotating wave” solutions [291.) In applications, it 
is desirable to operate in the in-phase state; how- 
ever, the splay states often stably coexist with the 
in-phase state, leading to a competition for avail- 
able phase space [26, 30, 311. 

3. Symmetries and results for general N 

As a general rule, the underlying symmetries of 
a dynamical system have a profound effect on the 
observed dynamics [32, 331. Eq. (1) has two im- 
portant symmetries, which allow us to deduce 
some results valid for any N. The symmetries are: 

(i) S,,, symmetry. Eq. (1) is symmetric under 
any permutation of the N indices. This symmetry 
does not depend on the form of the terms in eq. 
(1); it obtains in any system of N identical oscilla- 
tors which are globally coupled. 

(ii) Reversibility. This symmetry does depend 
on the specific form of terms in eq. (1). In partic- 
ular, if we define the shifted variables 8, = 4k - 
rr/2, eq. (1) becomes 

de 
-2 = n + a cos 8, + j$ E cos ej 
dt 

j=l 

which is symmetric under ok + -ok, t -+ - t. 

Thus, the system is “reversible” in the following 
sense: if e,(t) is a solution, then so is -13,(-t). 

These symmetries have some dramatic conse- 
quences for the resulting dynamics, as we now 
discuss. 

Result 1. The in-phase periodic orbit is not 
asymptotically stable, for any N and any choice of 
parameter values. (Of course, this state exists 
only if there are no in-phase fixed points, which 
requires IR I > la + 1 I .) 

This result follows from reversibility. To show 
this, suppose that there is an asymptotically stable 
in-phase periodic orbit I. Then, any initial 
condition in a tubular neighborhood of I must 
approach I as t -+ m. However, for any such 
initial point {e,l, the symmetry-related point 
{ - 0,) must also approach I, but as t + -a. 
Thus, I is neither an attractor nor a repeller. 

Note that this argument makes no use of the 
S, symmetry. Therefore, a similar statement can 
be made for other array geometries: the in-phase 
state is not an attractor for any array whose 
governing equations have the reversibility 
symmetry. For example, it holds true for a ring of 
elements subject to nearest neighbor coupling. 
We will return to this point in section 6. 

A linear stability analysis of the periodic in- 
phase state of eq. Cl), based on a direct analysis 
of the equation, has shown that the state is lin- 
early neutrally stable [ill. In fact, the linear part 
of the PoincarC map is the identity. In this sense, 
the system exhibits very weak dynamics near the 
in-phase orbit. 



106 K. Y. Tsang et al. /Dynamics of a globally coupled oscillator array 

Actually, a more general statement can be 
made. Consider any system of the form 

2 =f(ei) + $ : f(ej), 
j=l 

i=l ,*..> N, (10) 

where f(0) is 2n-periodic, and suppose that 
f(0) > 0 for all 6’ so that (10) has a periodic 
in-phase orbit. (Note that eq. (9) is of this form, 
for f(e) =A + B cos 13, with the constants A and 
B chosen appropriately.) Then we have the 
following result. 

Result 2. The periodic in-phase state is linearly 
neutrally stable for any system of the form (10). 
Moreover, the linearized Poincare map about the 
in-phase orbit is the identity. 

The important point is that this result holds 
even if the system is not reversible. 

To prove result 2, we calculate the linearized 
PoincarC map. Let O(t) denote the in-phase orbit, 
and consider a small perturbation e,(t) = 00) + 

ti(t>. Then the linearized system is 

$=f’(s(t)) a+; zf(S,) Y 

( j=l I 

where the prime denotes differentiation with re- 
spect to the argument. If we change variables to 
p = N-‘C’? 5 

]=I j and ~~=&~--c~+,,i= l,..., 
N - 1, the linearized system completely de- 
couples: 

g = (1 +K)f ‘(e(t)) PL, 

2 =f’(e(t)) vi. 

This system can be integrated directly, and so 
there is no need for Floquet theory. Beginning 
with the equation for CL, we obtain 

+ = (1 +K)f’(e(t))dt 

dt 
= (1 +K)f’(e(t)) -&&de 

f’(e) do =- 
f(e) ’ 

since df?/dt = (1 + K)f(B) for the in-phase orbit 
O(t). Thus, integrating over one cycle of period T, 
we find ln[~(T)/~(O)] = In f(2rTT) - In f(O) = 0, 
so that p(T) = p(O). Similarly, qi(T) = vi(O) for 
all i, and hence the linear part of the Poincare 
map is the identity, as claimed. 

Note that result 2 is complementary to result 1. 
It provides a more detailed description of the 
dynamics near the in-phase orbit, but unlike result 
1, it does not rule out the possibility that higher- 
order terms could stabilize the in-phase orbit. 

We turn now to a discussion of the stability of 
the splay-phase periodic orbits. We conjecture 
that the splay states are always neutrally stable. 
This conjecture is suggested by both numerical 
experiments (see section 6, below), and by recent 
analytical results obtained from averaging theory 
[34]. However, we have been unable to prove the 
neutral stability of the splay states in general. 

There is one class of splay states for which we 
have a rigorous result: suppose tY,(t) is a splay 
state generated by an odd function 0. In other 
words, suppose there exists a T-periodic function 
such that O,(t) = @(t + kT/N) for all t and k, 
and O(- t) = -o(t). We call this an “odd splay 
state”. 

Result 3. If a splay state is odd, it is neither an 
attractor nor a repeller. 

In fact, we suspect that all splay states are odd, 
but we have been unable to prove this. Our 
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suspicions are based partly on numerical com- 
putations of splay states, in which we have always 
found 0 to be odd, and partly on results for the 
limit N -+ 03, for which 0 is demonstrably odd, as 
can be shown by the methods of section 5. 

To prove result 3, we use the fact that for odd 
0, the reversibility symmetry permutes the splay 
states among themselves. In particular, we have 
- B,( - t) = B,,,_,Jt), because 

-e,( -t) = -O( --t +/U/N) 

= @(t -U/N) 

=O(t+(N-k)T/N) 

= e,_,(t). 

Now since the splay state e,,,_,(t) is related to 
e,(r) by a permutation, they have the same 
stability type. Hence e,(t) has the same stability 
type as its time-reversed cousin 0,(-t>. But 
time-reversal interchanges attractors and repel- 
lers; consequently, the splay state 0,(t) is neither 
an attractor nor a repeller, as claimed. 

4. IV=2 

For N = 2, phase space is a 2-torus. In this 
case, we can determine completely the character 
of the phase portraits for any choice of parame- 
ters (0, a). There are fixed points given by sin 4k 
= -0/(a + 1) for both k = 1, 2; consequently, 
there are no fixed points when In/(a -t 1)1 > 1, 
and four fixed points - a sink, a source, and two 
saddles-when IL?/(a + 1>1 < 1. 

For N = 2, the S, and reversibility symmetries 
allow us to make a surprising observation: every 
orbit either approaches a fixed point as It I + m, or 
it is periodic. We will prove this by explicitly 
constructing the periodic orbits. Consider an ini- 
tial point (a, - a), i.e. a point on the line 0, + 
8, = 0 (see fig. 2). We integrate eq. (9) forward in 
time until the orbit intersects the line 8, + 8, = 
27r, and call the point of intersection (p, y), so 
that p + y = 21~. Now consider the inversion- 
related initial point (-a, (Y), and study the orbit 
flowing away from it both forward and back- 
ward in time. By the permutation symmetry, the 

Fig. 2. Construction of periodic orbits for N = 2. 
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forward piece intersects the line 8, + e2 = 27r at 
the point (y, 0); meanwhile, by the reversibility 
symmetry, the backward piece intersects the line 
8, + 8, = -2~ at the point t-p - y). But these 
are the same endpoint, since p = -y (mod 27r) 
-consequently, we have constructed a periodic 
orbit. This construction holds starting from any 

point on the line t3i + e2 = 0, provided it reaches 
the line 8, + 8, = 21r. Using index arguments [351, 
and the fact that the phase space is two-dimen- 
sional, one can show that all other orbits must 
approach a fixed point. 

Thus far, we have made no explicit reference 
to the splay-phase state. In fact, when periodic 

Fig. 3. Phase portraits for eq. (1) with N= 2 and a > 0. All of the pictures are periodic in both 6, and C& directions. (m) sink, 

(0) source, (@) saddle. (a) For R < R*, all orbits are attracted to the sink. (b) For 0 = a*, the two saddles are connected by 
heteroclinic orbits. Cc) For 0* < 0 <a + 1, two homoclinic orbits (each joining a saddle to itself) divide the torus into periodic and 

attracting regimes. Note the continuous band of periodic orbits. Cd) For a + 1 <R, all orbits are periodic and neutrally stable. 
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orbits exist at all, there is always a particular one 
which is a bona fide splay state. To see which one 
it is, one can think of the above construction as 
defining pairs of periodic orbits, one beginning 
from (a, - a) and its inversion-related cousin be- 
ginning from (-a, a), where CY typically varies 
over an open set of values. However, there is a 
particular (Y for which the “pair” actually defines 
the same orbit. This is the one where (Y = -p = 
y(mod2~); and this is precisely the splay-phase 
orbit. 

We are now in a position to find the phase 
portraits for the system: these are shown in fig. 
3a-3d, for various parameter ranges. The phase 
portraits shown are based on numerical integra- 
tion for a > 0; they have not been proven rigor- 
ously. For R < 0 *, all orbits are attracted to the 
sink (fig. 3a). At J2 = a*, there is a bifurcation 
signalled by the appearance of two heteroclinic 
saddle connections (fig. 3b). Beyond this point, 
for fl* < 0 < a + 1, there is a homoclinic orbit 
for each saddle which serves to decompose the 
phase space into two regions (fig. 3~). In one 
region, all orbits are attracted to the sink; in the 
other region, one has a continuous family of 
(neutrally stable) periodic orbits. The periodic 
orbits do not all have the same period: the orbits 
lying closer to the homoclinic orbits have longer 
periods. As 0 increases further, this band of 
periodic orbits grows broader, until the four fixed 
points disappear (simultaneously) at 0 = a + 1. 
At this point, the band has grown to be the whole 
torus, so that all points lie on neutrally stable 
periodic orbits (fig. 3d). 

The flow depicted in fig. 3c is particularly curi- 
ous, and deserves special attention: there is a 
region of dissipative behavior coexisting with a 
region of what one ordinarily associates with inte- 
grable behavior in Hamiltonian systems. In some 
sense, the system looks conservative or dissipa- 
tive, depending on the initial conditions. This 
surprising situation persists over a range of pa- 
rameter values. The origin of this phenomenon 
lies with the symmetries obeyed by our model 
1361. We will return to this point in section 6. 

5. Limit of large N 

We turn next to the limit of very large arrays, 
N + w, and consider the properties of the splay 
states. In this state, all the oscillators have the 
same waveform, but are shifted by a tixed fraction 
of a cycle: 4,(t) = @(t + /CT/N) for k = 1,. . . , N. 

Here, @ is the common waveform and T is the 
oscillation period. Eq. (1) may be rewritten in 
terms of @ as follows: 

& 
dt =n+asin4,+ & t sin@(t+jT/N). 

j=l 

As N + m, we interpret the sum as a Riemann 
integral, with At = T/N. Then the sum converges 
to the time average of sin @, 

$ f sin@(t+jT/N) 
j=l 

=+ .; sin@(t+jT/N)At 
I=1 

1 T 
-+- 

/ Tel 
sin@(t)dt. 

Thus, Q(t) satisfies the equation 

d@ 1 r. 
dt =n+asin@+ T o sm@(t)dt, 

/ (11) 

which may be solved self-consistently, as follows. 
Let 

,,1 T. 
/ TO 

sm @( t) dt. 

Then eq. (11) becomes simply 

d@ 
dr =n+asin@+m, 

which has a period given by 

(12) 

T= 
21T 

4( a+m)*-a* * 
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The quantity m can be determined from eq. (12) 
by changing variables from t to Qi, with the result 

m= 
JW ,-211 sin@d@ 

2T a fi+m+asin@ 

After evaluating the integral and solving for m, 
we find 

-n+&%z(a+2) 
m= a+2 (13) 

Thus, there are two types of splay states in the 
large-N limit, which we will call “plus ” and 
“minus” corresponding to the choice of signs in 
eq. (13). These states are born together in a 
saddle-node bifurcation of periodic orbits [37] at 
n=n*=d_, and then move apart as fl 
increases. The plus state continues to exist for all 
L! > R*. In contrast, the minus state cannot exist 
for arbitrarily large a, since m is the time aver- 
age of sin @ and consequently bounded in magni- 
tude. The critical case occurs when 0 = a + 1 (so 
that m = - 1 in eq. (13)). Remarkably, at this 
value of 0, the minus splay state coalesces with 
the in-phase critical point c$~ = -~/2. For larger 
values of L!, there are no critical points at all, 
leaving the plus splay states coexisting with an 
in-phase periodic orbit. 

One final remark: We find that the above value 
for R* gives a surprisingly good estimate for the 
corresponding bifurcation point in the N = 2 case. 
For example, when a = 1, the above formula 
yields a* = fi for N -+ M, compared to our nu- 
merical result of 0* = 1.66 * .Ol for N = 2 (cor- 
responding to fig. 36). 

6. Discussion 

In this paper, we have focused on periodic 
solutions of the array eq. (1). Based on symmetry 
considerations alone, it is possible to draw con- 
elusions for general N, regarding the lack of 

asymptotic stability of both in-phase and splay 
periodic orbits, when they exist. As long as there 
are no fixed points (that is, for ]ti/(a + 111 > l), 
it is easy to see that an in-phase periodic orbit 
exists; on the other hand, the existence of splay 
states has been established by direct analysis of 
the dynamical equations for N = 2 and N -+ ~0. In 
fact, for N = 2 we have found a continuous band 
of periodic orbits; only one particular orbit in this 
band is a “true” splay state, as defined at the end 
of section 2. By topological [38] or degree-theo- 
retic [281 arguments, one can prove the existence 
of bona fide splay states for any N, assuming 0 is 
sufficiently large. 

We have found that the case of N = 2 is spe- 
cial, and return in particular to the situation 
depicted in fig. 3c. As we have noted, this phase 
portrait displays a coexistence of dissipative be- 
havior (attraction to a sink) and “conservative” 
behavior-we use quotation marks because, for 
example, the flow is not area-preserving. Based 
on experience with Hamiltonian systems, we 
would associate the band of periodic orbits with 
some constant of motion like an “energy”; how- 
ever, we have been unable to construct explicitly 
any such conserved quantity. This sort of dissipa- 
tive/integrable coexistence has been reported 
previously, by Politi et al. [39], for equations 
governing a (somewhat idealized) laser system. In 
that work, the authors reported the “coexistence 
of conservative and dissipative dynamics” in a 
three-dimensional phase space. More recently, in 
a model of particle sedimentation in a highly 
viscous fluid, investigators also find conservative 
“Hamiltonian-like” behavior despite the pres- 
ence of dissipation [36, 401. As emphasized by 
Golubitsky et al., the origin of this behavior is the 
existence of “a time-reversal symmetry, which 
turns out to be just as good as a Hamiltonian 
structure for finding periodic solutions” [36]. It is 
interesting to note that, in the sedimentation 
problem, this occurs in the limit of zero 
inertia- similarly, the derivation of our model 
equations corresponds to the limit of vanishing 
capacitance of the Josephson junction elements 
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(a limit valid for so-called point contact junctions, 
as opposed to tunnel junctions). 

Next, we return to the relevance of our results 
for physically realizable Josephson junction ar- 
rays. First of all, the phase portrait depicted in 
fig. 3c corresponds to a negative load resistance 
(see fig. l), and is therefore irrelevant under 
ordinary circumstances (i.e. using ordinary pas- 
sive circuit elements). However, the results of 
section 3 are valid for any choice of parameters, 
and consequently hold for real arrays as well. In 
fact, since the arguments of that section depend 
only on symmetry considerations, the results may 
be generalized to other array geometries, for in- 
stance the two-dimensional arrays (which are of 
interest for their application as a new voltage 
standard), or other kinds of load circuits. And as 
already mentioned, neutral stability of the in- 
phase state holds for any array with “homoge- 
neous” coupling, e.g. nearest neighbor coupling 
on a ring. Physically, the lack of asymptotic stabil- 
ity implies a sensitivity to the presence of external 
noise, such as Johnson noise generated in the 
circuit resistance. This sensitivity should be di- 
rectly observable in experiments as an increased 
line width in the peaks of a power spectrum of 
the voltage output of the array, together with a 
noise rise at very low frequencies. A more quanti- 
tative analysis of these phenomena is currently 
underway [41]. 

We end by describing some intriguing empiri- 
cal observations, based on numerical analysis. 
Recall that, for N = 2, a > 0, and 0 > a + 1, all 
orbits are periodic. What is the analogous state- 
ment for N > 2? Computer simulations suggest a 
result that we find extremely surprising: for every 
N, the phase space appears to be foliated by a 
nested family of invariant 2-tori! It is conceivable 
that the system would have invariant 2-tori for 
N = 3; what is amazing is that it appears to be 
true for N as large as we have investigated (up to 
N = 101. These tori are concentric tubes about 
the splay states (essentially “inflated versions” of 
the splay state). When the system is started from 
a random initial condition, the trajectory runs 

“parallel” to the splay state and winds slowly 
about it. The trajectory is neither attracted to nor 
repelled from the splay state; instead it appears 
to be confined to the surface of a 2-torus (seen as 
an invariant closed curve in the Poincare section). 
As time evolves, the trajectory simply runs around 
the torus in an apparently quasiperiodic fashion. 
Further investigation of these issues is in progress. 

Motivated by an earlier version of this paper, 
Swift has devised an averaging method for study- 
ing the dynamics of eq. (9). The averaging theory 
predicts the observation of invariant 2-tori for all 
N, and also correctly accounts for the numerically 
observed ratios of the two frequencies [34]. Nev- 
ertheless, whether or not invariant 2-tori exist for 
the unaveraged system has yet to be determined 
rigorously. 
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