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Tracing potentially infected contacts of confirmed cases is important when fighting outbreaks of many
infectious diseases. The COVID-19 pandemic has motivated researchers to examine how different contact tracing
strategies compare in terms of effectiveness (ability to mitigate infections) and cost efficiency (number of
prevented infections per isolation). Two important strategies are so-called forward contact tracing (tracing to
whom disease spreads) and backward contact tracing (tracing from whom disease spreads). Recently, Kojaku
and colleagues reported that backward contact tracing was “profoundly more effective” than forward contact
tracing, that contact tracing effectiveness “hinges on reaching the ‘source’ of infection,” and that contact tracing
outperformed case isolation in terms of cost efficiency. Here we show that these conclusions are not true in
general. They were based in part on simulations that vastly overestimated the effectiveness and efficiency of
contact tracing. Our results show that the efficiency of contact tracing strategies is highly contextual; faced with
a disease outbreak, the disease dynamics determine whether tracing infection sources or new cases is more
impactful. Our results also demonstrate the importance of simulating disease spread and mitigation measures in
parallel rather than sequentially.
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I. INTRODUCTION

To combat the spread of an infectious disease, contact
tracing can be a useful mitigation tool. Contact tracing aims
to identify infectious individuals through their social contacts;
when an infected person has been identified, their close so-
cial contacts are traced and asked to test and possibly get
treatment or quarantine. By proactively tracing and testing
potentially infected people, public health officials can reduce
the transmission of the infectious disease. For diseases such
as SARS-CoV-2, where many transmissions take place before
the infectious person develops symptoms [1–3], contact trac-
ing is critical in reducing further spread [4–6].

During the last two decades, mathematical epidemiologists
have sought to understand in what circumstances contact trac-
ing is effective [7]. Among other things, researchers have
investigated how the ability of contact tracing to curb the
spread of disease is influenced by the network structure
of social interactions [8–16], disease characteristics such as
infectiousness profiles or case report statistics [17–21], dif-
ferent choices in how contact contact tracing is carried out
[13,14,22], and specific outbreak scenarios (real or imagined)
[23–25]. The findings of these studies have led to both con-
crete recommendations in case of bioterrorism [23], and more
qualitative insights such as that contact tracing effectiveness
can be affected by clustering and heterogeneity in population
contact network structures [13,15].

The COVID-19 pandemic spurred a range of theoretical
epidemiological investigations. Topics included vaccination
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prioritization strategies [26], the importance of accuracy and
turnaround time in diagnostic tests [21,27,28], how stan-
dard confidence intervals can obscure extremes of epidemic
projections (and what the alternatives are when presenting
such projections to decision makers) [29], how schools and
other institutions can be reopened safely following lockdowns
[30–32], and how superspreading influences disease trans-
mission and control measures [33–35]. Attention was also
paid to contact tracing and its effectiveness. Arguably, the
most influential theoretical contact tracing study during the
pandemic was that authored by Kojaku et al. [36].

Kojaku et al. [36] investigated what makes contact trac-
ing efficient in networked populations. They showed that
backward contact tracing preferentially leads to high-degree
infected individuals—superspreaders—with a sampling bias
stronger than the celebrated friendship paradox [36]. The
friendship paradox states that “your friends have on average
more friends than you do” [37]; the reason being that (not
considering possible degree correlations) following a random
edge from a node leads to a degree-k node with probability
proportional to kpk , where pk is the probability that a uni-
formly random node has degree k. The statistical arguments
presented by Kojaku et al. [36] show that tracing backward in
the transmission tree (a rooted, directed tree illustrating who
infected whom) leads to degree k-nodes with probability pro-
portional to k2 pk—a much stronger bias than that underlying
the friendship paradox. This important result formalizes how
effective backward tracing is at uncovering superspreaders.

In addition to the derivation of the backward-tracing sam-
pling bias, Kojaku et al. [36] also used numerical simulations
to make general conclusions about the effectiveness of dif-
ferent disease mitigation strategies. They devised a contact
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tracing protocol that preferentially traced sources of infec-
tion. The contact tracing protocol is useful if only a limited
number of nodes can be traced each timestep. Thus, Kojaku
et al. demonstrate that contact tracing backward or forward
can be a strategic choice and of high practical relevance if
contact tracing resources are limited compared to the number
of positive cases identified. One of their main conclusions was
that “compared to ‘forward’ contact tracing (tracing to whom
disease spreads), ‘backward’ contact tracing (tracing from
whom disease spreads) is profoundly more effective.” Indeed,
this quote was the center of most coverage of the study in news
outlets and on social media [38]. They also reported that the
efficiency of contact tracing “hinges on reaching the source of
infection” and that contact tracing beats case isolation in terms
of cost efficiency. In this context, “case isolation” and “contact
tracing” refer to two different mitigation strategies. “Case iso-
lation” is the strategy where positive cases are isolated upon
identification. “Contact tracing” is the strategy where positive
cases are isolated upon identification and the contacts of the
identified positive case are then proactively traced and tested
in an effort to identify nearby active cases.

In this paper, we demonstrate that Kojaku et al.’s conclu-
sions about the superiority of backward tracing over forward
tracing and case isolation are not correct in general. Their
conclusions rely on simulations of compartmental models
on networks that systematically overestimate the efficiency
and effectiveness of contact tracing. The overestimate stems
mainly from the sequential nature of how Kojaku et al. [36]
implement contact tracing and case isolation in their simula-
tions: they first run their model epidemic to completion; only
after that do they perform the model versions of case isolation
and contact tracing. But in reality, these two processes occur
contemporaneously rather than sequentially [39].

More precisely, Kojaku et al. [36] simulate epidemics in-
volving four classes of people relative to the disease, namely
those who are susceptible (S), exposed (E), infected (I), and
recovered or removed (R). They begin by simulating un-
constrained SEIR epidemics spreading on various network
topologies. From these simulations, they then obtain trans-
mission trees. Finally, contact tracing and case isolation are
simulated using these transmission trees: If an infectious node
is successfully identified and isolated, then Kojaku et al. [36]
assume that all the nodes downstream in the transmission tree
(the “descendants” that would have otherwise been infected)
are thereby precluded from getting infected. But this assump-
tion ignores the fact that a downstream node may well have
other infected neighbors, each of which could potentially pass
the infection on to it, even if the traced ancestor has been
isolated.

The overestimation of contact tracing efficiency and effec-
tiveness is likely to be large because descendant distributions
are heavy-tailed [40]. In reality, the epidemic unfolds side-by-
side with mitigation interventions like contact tracing. For this
reason, simulating disease mitigation and epidemic spreading
in parallel would provide a more accurate estimate of the
efficacy of contact tracing.

In this paper, we examine contact tracing efficiency by
simulating disease spread and mitigation measures in parallel
rather than sequentially. This choice reduces the estimated
efficiency of contact tracing by an order of magnitude

compared to Kojaku et al.’s estimates [36], and demon-
strates that backward contact tracing can be less efficient than
forward contact tracing. Correcting another shortcoming of
Kojaku et al.’s simulations—that they never release suscepti-
ble nodes that were traced and quarantined—further decreases
contact tracing efficiency and demonstrates that case isolation
can be more efficient than contact tracing.

II. SIMULATING EPIDEMICS
AND MITIGATION STRATEGIES

We first simulate epidemics unfolding on a Barabási–
Albert network [41] like the one used by Kojaku et al. [36].
The network has 250 000 nodes with average degree 4. Our
simulation progresses in discrete time steps. We assume that
each infected node first spends tE days as preinfectious and
then is infectious for tI days. Each of these times is drawn
from probability distributions of our choice. Unless otherwise
stated, we draw tE from an exponential distribution with mean
4 days and tI from a lognormal distribution recently reported
to resemble the incubation period of COVID-19 [42]. We note
that our results are robust to changes in these distributions:
excluding the exposed compartment entirely or drawing tE
and tI from the same exponential distribution with mean 4
days yields similar results (see Appendix A).

In our model, we assume that an infectious node infects
each susceptible neighbor with probability pI = q(t − t0) p̄I at
each time step. Here p̄I is an average infectivity and q(t − t0)
is a normalized function that expresses the relative likelihood
of the node infecting a neighbor each day after time step
t0 when the node itself became infectious. We choose p̄I =

1.0
(k̄−1)

, where k̄ is the mean degree of the network. We choose
this p̄I value because this is the value that would result in a
single secondary case on average if the disease were spreading
unmitigated in a tree with the same mean degree (in this case,
a newly infected node would have mean degree k̄ on average
and a single infected neighbor, so k̄ − 1 susceptible neighbors
that would each get infected with independent probability p̄I ).

In addition to the disease dynamics described above, we
also simulate disease mitigation measures. Contrary to Kojaku
et al.’s simulations of compartmental models and mitigation
measures on networks, we simulate the mitigation measures
in parallel with the disease spreading; This choice effectively
makes contact tracing a dynamical process that competes for
nodes with the spreading disease [11,22,43] Like Kojaku et al.
[36], we assume that an infected node is identified with prob-
ability ps at symptom onset and that each of its neighbors
(infectious or not) is successfully traced with probability pt .
When a node is traced, we add it to a contact list with some
weight w. To facilitate simulation of various contact tracing
strategies, we treat w as adjustable. If w = 1 for all nodes,
then the contact tracing scheme reduces to that of Kojaku et al.
[36]; other choices of w allow us to implement backward con-
tact tracing and forward contact tracing, as we discuss below.

We compare the impact of backward contact tracing and
forward contact tracing by carrying out two kinds of sim-
ulations. In one, we simulate backward contact tracing by
allowing only the direct source of infection to be traced (w =
wparent = 1 if a traced node is the direct source of infection,
and w = 1 − wparent = 0 otherwise). In the other, we simulate
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FIG. 1. Efficiency of contact tracing for two epidemic models with different patterns of infectiousness. Figure insets illustrate the assumed
infectiousness pattern. Vertical values illustrate infectiousness on day t − t0 after the node became infectious, and inset background color
illustrates the disease state of a node on that day (Green: Exposed; Blue: Asymptomatic and infectious; Red: Symptomatic and infectious).
In these illustrations, the infectious period lasts 20 days. We emphasize that we draw the infectious period from a probability distribution and
that 20 days is a rare draw; we use a 20-day infectious period in this illustration because it makes the change of infectiousness as a function of
time easy to see. After its infectious period, the node stops being infectious. In the main panels of the figure, we plot the number of infections
that were prevented by two types of contact tracing for each person that was isolated in a simulation. Magenta histograms show results for
an idealized backward contact tracing scheme in which only the direct source of infection (the “parent” node) of an identified infected node
can be traced; in the green histograms, any neighbor except the direct source of the infection can be traced. We take the number of prevented
infections to be the difference in nodes that got exposed to the disease when simulating the epidemic with parameters ps = 0, pt = 0 and
ps = 0.05, pt = 0.50 (and otherwise identical initial conditions). The histograms show values obtained for 1 000 different simulations. The
horizontal span of each of the vertical lines covers the interval between histogram mean value minus the error of this mean and histogram
mean value plus the error of this mean value. (a) Constant infectiousness model. An infectious node is always symptomatic and infects each
susceptible neighbor with equal probability on each of its infectious days. Backward contact tracing is the more efficient mitigation strategy,
as shown by the relative positions of the magenta and green histograms. (b) Skewed infectiousness model. An infected node is asymptomatic
during its first half of its infectious period and its infectiousness peaks around symptom onset. Backward contact tracing is the less efficient
strategy here.

forward contact tracing by allowing any neighbor other than
the direct source of infection to be traced (w = wparent = 0
if a traced node is the direct source of infection, and w =
1 − wparent = 1 otherwise). At each time step, after the above-
described contact tracing has been carried out, we sum up the
weights that each node is listed with in the contact list. Like
Kojaku et al. [36], we then isolate the n = 30 nodes with the
highest sum of weights in that list. We clear the contact list at
the beginning of each time step.

III. RESULTS

We now present results indicating that (i) backward con-
tact tracing is not necessarily more effective or efficient than
forward contact tracing, (ii) contact tracing is not necessarily
more efficient than case isolation and (iii) contact tracing
efficiency can depend on network structure and in particular
whether the network has many hubs or not. Our simulations
also indicate that Kojaku et al.’s simulation choices cause
their estimate of contact tracing efficiency to be an order of
magnitude too high.

A. Comparing the efficiency of backward and forward tracing

To compare backward contact tracing to forward contact
tracing, we simulate the mitigation of disease outbreaks with
each of these contact tracing strategies. As detailed in the
previous section, we implement backward contact tracing by
setting wparent = 1 and wnonparent = 0 and forward contact trac-
ing by setting wparent = 0 and wnonparent = 1.

For the simulation of each contact tracing strategy, we
use the parameters ps = 0.05 and pt = 0.50, and simulate
two different epidemic models: a “constant infectiousness”
model and a “skewed infectiousness” model. The constant
infectiousness model assumes that each infected node has a
constant probability of passing the infection along to each of
its susceptible neighbors during the days when the node is
infectious and symptomatic [Fig. 1(a)]. In the skewed infec-
tiousness model, inspired by known properties of COVID-19,
each infected node is asymptomatic during the first half of
its infectious period, and its infectiousness peaks around
symptom onset [Fig. 1(b)]. Furthermore, for the skewed
infectiousness model, we use an empirically estimated time-
dependent transmissibility of COVID-19 for the function
q(t − t0) [1,44].

Figures 1(a) and 1(b) compare the efficiency of both kinds
of contact tracing (tracing only parents or no parents) for the
two infectiousness models. For the constant infectiousness
model [Fig. 1(a)], each isolation results in around 2 prevented
infections (histogram mean is indicated by the center of the
vertical line with the same color as the histogram bars; the
horizontal span of the line marks the histogram mean plus
and minus the standard error of the mean). For the skewed
infectiousness model [Fig. 1(b)], each isolation results in
around 1 prevented infection. These numbers are an order
of magnitude smaller than the approximately 20 prevented
infections per isolation estimated by Kojaku et al. [36] for a
constant infectiousness model.

Another point to notice is the relative positions of the
magenta and green histograms in Figs. 1(a) and 1(b). Back-
ward contact tracing is the more efficient disease-mitigation
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strategy in the constant infectiousness model [Fig. 1(a)], but
the less efficient strategy in the skewed infectiousness model
[Fig. 1(b)]. This reversal confirms the intuitive arguments
made above.

The observations presented above for the efficiency of
the two contact tracing schemes can also be made for the
effectiveness of the strategies. For the constant infectious-
ness model, the mean number of infected in a simulation
and error of this mean is 94 304 ± 22 for forward contact
tracing and 93 454 ± 24 for backward contact tracing. This
makes backward contact tracing the more effective strategy,
just like it was the more efficient strategy. For the skewed
infectiousness model, however, the number of infected in a
simulation changes to 92 851 ± 23 for forward contact tracing
and 94 357 ± 22 for backward contact tracing, making for-
ward contact tracing the more effective strategy in this case.

B. Comparing case isolation and contact tracing

Kojaku et al. overestimate the efficiency of contact tracing
by simulating disease spread and mitigation measures sequen-
tially rather than in parallel. As we shall later demonstrate, this
sequential implementation is what causes an overestimation
of contact tracing efficiency by an order of magnitude. On top
of that, another assumption incorrectly inflates Kojaku et al.’s
estimate of contact tracing efficiency. Correcting that assump-
tion reveals that case isolation can be more cost efficient than
contact tracing, contrary to Kojaku et al.’s conclusion.

A key unrealistic assumption in Kojaku et al.’s [36] simu-
lation of contact tracing and case isolation is that quarantined
nodes remain in quarantine for all time—even if they are
susceptible. This assumption, again, increases the estimated
efficiency of contact tracing. If we relax this unrealistic as-
sumption, and instead assume that quarantined nodes are
released after 4 days if they are neither exposed nor infec-
tious, then case isolation becomes more efficient than contact
tracing in terms of the number of prevented infections per
isolation. This result is shown in Fig. 2. Thus, Kojaku et al.
[36] not only overestimated the numerical value of the esti-
mates of contact tracing efficiency. They also overestimated
the efficiency of contact tracing relative to other mitigation
measures.

One might wonder whether releasing quarantined sus-
ceptible nodes changes the results presented in Fig. 1(a).
Figure 3 demonstrates that this is not the case; releasing
quarantined susceptible nodes does not change that backward
tracing is more efficient than forward tracing, at least when
simulating the constant infectiousness disease model on a
Barabási–Albert network with mean degree 4. In Fig. 3, we
plot the estimated number of infections prevented per iso-
lation for different choices of contact tracing strategy. On
the horizontal axis, we gradually decrease the weight that a
direct source of infections is given in the contact list; from
wparent = 1 (and wnonparent = 1 − wparent = 0) at the leftmost
point, to wparent = 0 at the rightmost point. The background
color changes from magenta to green as the contact tracing
scheme changes from pure backward contact tracing to pure
forward contact tracing tracing as wparent decreases from 1
at the leftmost point of the plot to 0 at the rightmost point
(magenta and green being the face colors of the histograms

FIG. 2. Efficiency of case isolation vs contact tracing when
susceptible quarantined nodes are eventually released. Figure inset
illustrates the assumed infectiousness pattern. Vertical values illus-
trate infectiousness on day t − t0 after the node became infectious,
and inset background color illustrates the disease state of a node on
that day (Green: Exposed; Red: Symptomatic and infectious). In the
main panel of the figure, the yellow histogram plots the number of
infections that were prevented by contact tracing for each person
that was isolated in a simulation. We allow for both forward and
backward contact tracing in this figure and release a traced and
isolated node after 4 days of isolation if it is not infectious. The
blue histogram plots the number of infections that were prevented
by case isolation for each person that was isolated in a simulation.
We take the number of prevented infections to be the difference in
nodes that got infected by the disease when simulating the epidemic
with parameters ps = 0, pt = 0 and ps = 0.05, pt = x (where x is
0.50 for the yellow histogram and 0 for the blue histogram) (and
otherwise identical initial conditions). The histograms show values
obtained for 1 000 different simulations. In this case, the mean in-
fections prevented per isolation is 1.72 ± 0.02 for case isolation
(interval marked by the blue vertical line for the blue histogram)
and 1.54 ± 0.01 (interval marked by the yellow vertical line for the
yellow histogram), indicating that for these combinations of disease
and mitigation measures, case isolation is more efficient than contact
tracing.

in Fig. 1). For the Barabási-Albert network, the efficiency of
contact tracing decreases monotonically as parent nodes are
given less weight. Changing the network to a fully connected
Erdős–Rényi, network with 245 046 nodes and a mean de-
gree of 4.08 makes contact tracing efficiency monotonically
increase as parent nodes are given less weight in the contact
list. It is interesting that Fig. 3 shows that contact tracing
efficiency decreases with the weight children are given in the
tracing procedure for Barabási–Albert networks, whereas the
contact tracing efficiency does not decrease as children are
traced more frequently for Erdős–Rényi, networks. (A Mann-
Kendall statistical test yields a probability of 0.06 that the
observed increases in contact tracing efficiency with increased
weight of children in the tracing procedure on Erdős–Rényi,
networks could be due to random effects.) One possible ex-
planation for this is the sampling bias derived by Kojaku
et al.: Barabási–Albert networks have more hub structure and
therefore includes many potential super spreaders. Tracing
backwards can help identifying these super spreaders and
prevent further spread from these hubs. For Erdős–Rényi,
networks, however, super spreaders are much less likely to
exist. So the backward tracing more rarely identifies very
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FIG. 3. Efficiency of contact tracing for combinations of back-
ward and forward contact tracing. We simulate a constant infectious-
ness model on two different networks with similar mean degree: A
Barabási–Albert network and an Erdős–Rényi, network. With param-
eters ps = 0.05 and pt = 0.50, we simulate different combinations of
forward and backward tracing. We combine backward and forward
tracing by varying a parameter wparent (“parent factor” on the top
horizontal axis). When a node is traced, we add it to the contact
list with weight wparent if it was the direct source of infection for
the node it was traced through; otherwise, we add it to the contact
list with weight 1 − wparent (“Child factor” on the bottom horizontal
axis). After each time step, we add the weights of each node in
the contact list. We then isolate the 30 nodes with the highest sum
of weights and clear the contact list before the next time step. For
each choice of parent factor, we simulate 1 000 different outbreaks
and show the mean infections prevented per isolation (and standard
error of the mean) in these simulations as compared to simulations
on the same networks, with no contact tracing and the same set of
initially infected nodes. For the Barabási–Albert network, the contact
tracing efficiency drops monotonically as forward contact tracing
becomes a more important part of the contact tracing strategy. For
the Erdős–Rényi, network, the curve is not decreasing.

high-degree nodes and therefore forward tracing may be more
beneficial for these networks.

Figure 4 tests this hypothesis. We first use two networks
consisting of approximately 250 000 nodes: The Erdős–
Rényi, network and the Barabási–Albert network introduced
above. From the Erdős–Rényi, network, we then create new
networks by rewiring each edge in the network with iden-
tical probability pr . If the edge connects nodes i and j in
the Erdős–Rényi network and is selected for rewiring, then
we rewire the edge to instead connect two nodes l and k.
The nodes l and k are chosen with probability proportional
to the degree of these nodes in the Barabási–Albert network.
If either i or j has degree 2 or less, then the low-degree node
keeps the edge, and we only rewire the other end. With this
procedure, we can create networks with adjustable amount of
hub structure: A higher pr means more rewiring and more
hub structure. We then simulate spread of a disease with
constant infectiousness on networks created with pr values
0, 0.1, 0.3, 0.5, and 1. Figure 4 shows that forward contact
tracing is more efficient for the Erdős–Rényi, network, but
is overtaken in efficiency by backward contact tracing as the
networks get more hub structure. This supports the hypothesis

FIG. 4. Efficiency of backward and forward contact tracing on
networks with adjustable amount of hub structure. We simulate a
constant infectiousness model on five different networks created by
rewiring each edge in an Erdős–Rényi, network with probability pr

(horizontal axis) to connect two other nodes each chosen propor-
tional to their degree in a separate Barabási–Albert network. A higher
pr results in more hub structure. We create five networks in this
way; on each, we simulate the constant infectiousness model with
parameters ps = 0.05 and pt = 0.50 and release isolated susceptible
nodes after 4 days. For each network, we simulate 1 000 different
outbreaks and show the mean infections prevented per isolation (and
standard error of the mean) in these simulations as compared to sim-
ulations on the same networks, with no contact tracing and the same
set of initially infected nodes. As the networks get more hub structure
(moving right on the horizontal axis), forward contact tracing goes
from being the preferred contact tracing strategy to being the least
favored contact tracing strategy.

that hub structure combined with the sampling bias in con-
tact tracing explain the observations made in Fig. 3. In
Appendices B and C, we provide results for simulations on
bipartite people-gathering networks and branching processes
with poisson and power-law degree distributions. In all cases,
the infectiousness model heavily affects the efficiency of for-
ward and backward contact tracing including their relative
efficiency.

C. Replicating high estimates of contact-tracing efficiency

In the previous sections, we showed that Kojaku et al.’s
[36] estimates of contact tracing efficiency are an order of
magnitude higher than ours. Our epidemic model is different
from Kojaku et al.’s [36] in a number of ways. For ex-
ample, time progresses in discrete time steps in our model,
and is continuous in Kojaku et al.’s [36]. Such differences
can impact results significantly (see Ref. [45] for a demon-
stration of how offspring distributions are different for the
susceptible-infected-recovered model and the Independent
Cascade model). It is therefore natural to wonder whether
the large difference in estimates of contact tracing efficiency
could be due to such model differences, and not the reasons
outlined above. To test this possibility, we simulated con-
tact tracing like Kojaku et al. [36] did, by first running the
epidemic to completion (using our constant infectiousness
model and the Barabási–Albert network used above) and then
implementing mitigation measures on the resulting transmis-
sion trees. We obtained 1 000 different simulated transmission
trees and implemented simulated contact tracing 10 times
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FIG. 5. Estimates of infections prevented per isolation when
disease spread and mitigation measures are simulated sequentially
rather than in parallel. We simulated an infectious disease spreading
to completion 1 000 times, obtaining 1 000 transmission trees in the
process. On each tree, we simulated case isolation and contact tracing
10 different times. Each time, we estimated the number of infections
prevented per isolation. The figure shows the distribution of the
10 000 estimates. The mean value is 24.14 ± 0.06, a value similar
to that obtained by Kojaku et al., but an order magnitude larger than
the more realistic estimates obtained when simulating disease spread
and mitigation measures in parallel.

on each. This gave us 10 000 estimates of contact tracing
efficiency using this sequential method.

Figure 5 plots the results in a histogram. The distribution
has a thick right tail and the resulting mean estimate of contact
tracing efficiency was 24.14 ± 0.06 infections prevented per
isolation. This is of the same order of magnitude as Kojaku
et al.’s estimate, and thus strongly supports the claim that the
sequential nature of how Kojaku et al. [36] simulate contact
tracing causes their estimate of contact tracing efficiency to be
much too large.

IV. DISCUSSION

Contact tracing is a central component in mitigation strate-
gies for many infectious diseases. Contact tracing can be used
for different purposes, e.g., proactively finding cases to start
their treatment early and prevent severe disease, or as a tool to
reduce the number of secondary infections of newly infected
people. Here, we have focused on contact tracing as a tool for
reducing the number of secondary infections. A better under-
standing of how different contact tracing strategies compare
in terms of efficiency could translate into saved lives and de-
creased economic losses when faced with an epidemic. In this
paper, we investigated recent influential claims that backward
contact tracing is “profoundly more effective” than forward
contact tracing, that contact tracing effectiveness “hinges on
reaching the ‘source’ of infection” and that contact tracing
beats case isolation in terms of cost efficiency [36].

By correcting shortcomings in how disease spread and
mitigation measures were simulated in the study [36], we
showed that the above-mentioned findings do not hold up.
We conclude that contact tracing is not necessarily more cost
efficient than case isolation, and that whether backward trac-
ing or forward tracing is superior depends on the disease in
question and the structure of the underlying contact network.

For COVID-19-like disease dynamics simulated on several
kinds of contact networks (Barabási–Albert, Erdős–Rényi,
and people-gathering networks), we found that backward trac-
ing could actually be the less efficient strategy. Even so,
backward tracing could still be valuable as a means to uncover
new branches of the transmission tree that could then be
forward traced. How efficient this strategy would be remains
an open question.

We have simulated an idealized model for disease spread
and mitigation on static Barabási–Albert networks. The ideal-
ized nature of both the choices of models and networks means
that simulations could be made more realistic by choosing em-
pirically observed network structures, rather than the synthetic
Barabási–Albert networks, or by choosing disease models and
parameters more carefully to match those of the COVID-19
pandemic. We stress, however, that the point of this work
is not to present a realistic simulation of disease spread and
disease mitigation. Instead, our main contribution is to show
that recent conclusions about the superiority of backward
tracing to forward tracing and case isolation are flawed and to
demonstrate that the flaw stems not from unrealistic models of
disease spread or mitigation measures, but from the sequential
nature of Kojaku et al.’s [36] simulations. These sequential
simulations of disease spread and mitigation efforts cause both
the quantitative estimates of backward tracing efficiency and
the qualitative results comparing the efficiency of different
mitigation strategies to be unreliable.

One of the things we have shown is that disease charac-
teristics such as the infectiousness profile can greatly impact
the effectiveness and relative effectiveness of forward contact
tracing and backward tracing. A related effect that can have
similar impact is waiting times for testing or contact tracing.
A delay in the testing or contact tracing will cause cases
to be identified later in their infectious period. Depending
on the length of the delay and incubation times, this could
again make backward contact tracing less favorable as com-
pared to forward contact tracing. However, very fast testing
and contact tracing could make it possible to ring-fence ac-
tive cases with contact tracing [21,46,47]. For discussions
about test turnaround times and contact tracing strategies see
Refs. [21,46].

There are many interesting directions for future research
on the efficiency of contact tracing strategies. As already
mentioned, one direction is to investigate mixed strategies of
strategically combined backward and forward contact trac-
ing. Using a branching process framework Endo et al. [48]
recently showed that a combination of backward and for-
ward contact tracing can curb the spread of diseases with
overdispersion better than forward tracing alone. Among other
things, their analysis did not investigate the effect of time-
varying infectiousness on contact tracing effectiveness, and
many interesting questions remain. How should resources for
backward and forward contact tracing be allocated when faced
with a specific disease? How many forward tracings should
be carried out for each person that was successfully backward
traced? Under what circumstances is backward contact trac-
ing so inefficient that it should not be prioritized explicitly?
Questions like these abound.

Another interesting direction would be to estimate contact
tracing efficiency at different stages of an epidemic. Contact
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FIG. 6. Efficiency of contact tracing for two epidemic models with different patterns of infectiousness and identical distributions for tE and
tI simulated on Barabási–Albert networks. Figure insets illustrate the assumed infectiousness pattern. Vertical values illustrate infectiousness
on day t − t0 after the node became infectious, and inset background color illustrates the disease state of a node on that day (Green: Exposed;
Blue: Asymptomatic and infectious; Red: Symptomatic and infectious). In the main panels of the figure, we plot the number of infections
that were prevented by two types of contact tracing for each person that was isolated in a simulation. Magenta histograms show results for
an idealized backward contact tracing scheme in which only the direct source of infection (the “parent” node) of an identified infected node
can be traced; in the green histograms, any neighbor except the direct source of the infection can be traced. We take the number of prevented
infections to be the difference in nodes that got exposed to the disease when simulating the epidemic with parameters ps = 0, pt = 0 and
ps = 0.05, pt = 0.50 (and otherwise identical initial conditions). We draw tE and tI from exponential distributions with mean 4 days. The
histograms show values obtained for 1 000 different simulations. The horizontal span of each of the vertical lines covers the interval between
histogram mean value minus the error of this mean and histogram mean value plus the error of this mean value. (a) Constant infectiousness
model. An infectious node is always symptomatic and infects each susceptible neighbor with equal probability on each of its infectious days.
Backward contact tracing is the more efficient mitigation strategy, as shown by the relative positions of the magenta and green histograms.
(b) Skewed infectiousness model. An infected node is asymptomatic during its first half of its infectious period and its infectiousness peaks
around symptom onset. Backward contact tracing is the less efficient strategy here.

tracing is of course most efficient in the very beginning of an
epidemic, when there is still hope that the spreading can be
stopped altogether. But how fast does the expected number
of prevented cases per isolation drop as the epidemic infects
more and more people? Is there a time when authorities should
prioritize carrying out more contact tracing and another where
resources are better spent increasing population screening
capabilities? Answers to such questions would be useful for
decision makers next time the world is faced with a pandemic.

The code and data necessary to reproduce our results are
available at [49].
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APPENDIX A: EXPONENTIAL DISTRIBUTIONS
FOR tE AND tI

In simulating the spread of diseases, we had to make
choices for the distributions of tE —the time that an exposed
node spends in the the exposed compartment—and tI —the
time an infectious node stays infectious. In the main text, we
assumed that tE was exponentially distributed and tI lognor-
mally distributed. Our results are robust to changing these
distributions. Figure 6 shows the obtained efficiency of back-
ward and contact tracing when drawing tE and tI from the
same exponential distribution with mean 4 days. In Fig. 6(a),
we simulate a constant infectiousness model. In this case,
backward contact tracing is the more efficient strategy, as
was the case in Fig. 1(a) in the main text. In Fig. 6(b), we

we simulate the skewed infectiousness model. In this case,
forward contact tracing is the more efficient strategy. Again,
this is in line with our results in Fig. 1(b), where tI was drawn
from a lognormal distribution.

APPENDIX B: PEOPLE-GATHERING NETWORKS

Figure 7 shows simulations of epidemics and contact
tracing strategies on bipartite people-gathering networks.
The degrees of people and gatherings are both drawn from
power-law distributions with exponent −3 (gatherings having
minimum degree 2, whereas people have minimum degree 1).
Because it is unlikely that two random draws from probability
distributions result in the same degree sums, we make the
degree sums equal by increasing the degree of one node until
degree sums are equal for people and gatherings. The stubs of
people and gatherings are then paired uniformly randomly.

Figure 7 illustrates the impact of changing the infectious-
ness model when simulating an epidemic in the people-
gathering networks. For the constant-infectiousness model
backward contact tracing is the most efficient [Fig. 7(a)],
whereas forward contact tracing is the most efficient
for the empirically informed skewed-infectiousness model
[Fig. 7(b)].

APPENDIX C: BRANCHING PROCESSES

A popular way of studying infectious diseases in popu-
lations is branching processes. One reason for this is that
branching processes often allows for analytical or numerical
results in infinite populations. Here, we numerically analyze
contact tracing efficiency in a branching process context. We
first create a branching process network starting from Nseeds
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FIG. 7. Efficiency of contact tracing for two epidemic models with different patterns of infectiousness simulated on bipartite people-
gathering networks. Figure insets illustrate the assumed infectiousness pattern. Vertical values illustrate infectiousness on day t − t0 after the
node became infectious, and inset background color illustrates the disease state of a node on that day (Green: Exposed; Blue: Asymptomatic
and infectious; Red: Symptomatic and infectious). In the main panels of the figure, we plot the number of infections that were prevented by
two types of contact tracing for each person that was isolated in a simulation. Magenta histograms show results for an idealized backward
contact tracing scheme in which only the direct source of infection (the ‘parent’ node) of an identified infected node can be traced; in the
green histograms, any neighbor except the direct source of the infection can be traced. We take the number of prevented infections to be the
difference in nodes that got exposed to the disease when simulating the epidemic with parameters ps = 0, pt = 0 and ps = 0.05, pt = 0.50
(and otherwise identical initial conditions). The histograms show values obtained for 1 000 different simulations. The horizontal span of each
of the vertical lines covers the interval between histogram mean value minus the error of this mean and histogram mean value plus the error
of this mean value. (a) Constant infectiousness model. An infectious node is always symptomatic and infects each susceptible neighbor with
equal probability on each of its infectious days. Backward contact tracing is the more efficient mitigation strategy, as shown by the relative
positions of the magenta and green histograms. (b) Skewed infectiousness model. An infected node is asymptomatic during its first half of its
infectious period and its infectiousness peaks around symptom onset. Backward contact tracing is the less efficient strategy here.

isolated generation-zero nodes. For each of these seeds, we
draw their out-degree, k, from an out-degree distribution p(k),
and connect this many generation-one nodes to the seed in
question. For each generation-one node, we then draw an
out-degree from p(k), connect it to that number of generation-
two nodes, and so on. We continue the process until node

number Nmax has been drawn. The result is a network con-
sisting of Nseeds different trees with at most gmax generations
of nodes where all but some nodes in the final two generations
have out-degree distribution p(k).

Having created a branching-process network, we can now
simulate epidemics unfolding on top of these using the proce-

FIG. 8. Efficiency of contact tracing for two epidemic models with different patterns of infectiousness simulated on branching process
networks with poisson degree distributions. Figure insets illustrate the assumed infectiousness pattern. Vertical values illustrate infectiousness
on day t − t0 after the node became infectious, and inset background color illustrates the disease state of a node on that day (Green: Exposed;
Blue: Asymptomatic and infectious; Red: Symptomatic and infectious). In the main panels of the figure, we plot the number of infections
that were prevented by two types of contact tracing for each person that was isolated in a simulation. Magenta histograms show results for an
idealized backward contact tracing scheme in which only the direct source of infection (the ‘parent’ node) of an identified infected node can be
traced; in the green histograms, any neighbor except the direct source of the infection can be traced. We take the number of prevented children
to be the decrease in direct neighbors of infected nodes that got infected in simulations where identified infected were isolated as compared
to counter factual simulations where the identified infected were not isolated. We simulate the epidemic with parameters ps = 0, pt = 0 and
ps = 0.05, pt = 0.50 (and otherwise identical initial conditions). The histograms show values obtained for 1 000 different simulations. The
horizontal span of each of the vertical lines covers the interval between histogram mean value minus the error of this mean and histogram
mean value plus the error of this mean value. (a) Constant infectiousness model. An infectious node is always symptomatic and infects each
susceptible neighbor with equal probability on each of its infectious days. Backward contact tracing is the more efficient mitigation strategy,
as shown by the relative positions of the magenta and green histograms. (b) Skewed infectiousness model. An infected node is asymptomatic
during its first half of its infectious period and its infectiousness peaks around symptom onset. Backward contact tracing is the less efficient
strategy here.
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FIG. 9. Efficiency of contact tracing for two epidemic models with different patterns of infectiousness simulated on branching process net-
works with power law degree distributions. Figure insets illustrate the assumed infectiousness pattern. Vertical values illustrate infectiousness
on day t − t0 after the node became infectious, and inset background color illustrates the disease state of a node on that day (Green: Exposed;
Blue: Asymptomatic and infectious; Red: Symptomatic and infectious). In the main panels of the figure, we plot the number of infections
that were prevented by two types of contact tracing for each person that was isolated in a simulation. Magenta histograms show results for an
idealized backward contact tracing scheme in which only the direct source of infection (the “parent” node) of an identified infected node can be
traced; in the green histograms, any neighbor except the direct source of the infection can be traced. We take the number of prevented children
to be the decrease in direct neighbors of infected nodes that got infected in simulations where identified infected were isolated as compared
to counter factual simulations where the identified infected were not isolated. We simulate the epidemic with parameters ps = 0, pt = 0 and
ps = 0.05, pt = 0.50 (and otherwise identical initial conditions). The histograms show values obtained for 1 000 different simulations. The
horizontal span of each of the vertical lines covers the interval between histogram mean value minus the error of this mean and histogram
mean value plus the error of this mean value. (a) Constant infectiousness model. An infectious node is always symptomatic and infects each
susceptible neighbor with equal probability on each of its infectious days. Backward contact tracing is the more efficient mitigation strategy,
as shown by the relative positions of the magenta and green histograms. (b) Skewed infectiousness model. An infected node is asymptomatic
during its first half of its infectious period and its infectiousness peaks around symptom onset. Backward contact tracing is the less efficient
strategy here.

dure described in the main text. We use all the generation-zero
nodes as seeds, define an infectiousness profile, an average
infectiousness p̄I , the two contact tracing parameters ps and
pt and a contact tracing strategy, and simulate 1 000 different
epidemics with these settings. To evaluate the efficiency of
forward and backward tracing, we need another metric than
number of cases avoided per isolate. This is because the
branching process framework ideally mimics an infinite-size
system, and descendant distributions are often heavy-tailed
and can even have a diverging mean [40]. For this reason,
we use another metric: The number of prevented children
per isolation. To quantify the number of prevented children
(secondary cases), for each isolated node in a simulation we
run a counterfactual scenario where the node was not isolated.
In this counterfactual scenario, the node’s course of disease
continues until recovery, and it gets the same chances to infect
its neighbors as it would have if the infectious node was not
discovered or isolated. We count the number of neighbors the
node successfully infects in this counterfactual scenario; this
number, we take to be the number of children prevented by the
isolation of the node. We note that this is an approximation
– the node could have been traced and isolated by another
neighbor at a later point. We also note that we only run coun-

terfactual scenarios for nodes in generations 0 to gmax − 2,
since these have out-degrees described by the distribution
p(k).

For all simulations, we choose Nseeds = 250, Nmax =
1 000 000, ps = 0.05, and pt = 0.50. We note that the branch-
ing process networks are trees, and so do not at all resemble
actual human contact networks which contain, e.g., nontriv-
ial clustering [50]. Figure 8 shows results obtained when
simulating disease spread on a branching-process network
with a Poisson out-degree distribution p(k) with mean 4.
For the constant-infectiousness model, backward tracing is
the most efficient [Fig. 8(a)], whereas forward contact trac-
ing is much to be preferred in the skewed-infectiousness
model [Fig. 8(b)]. Figure 9 shows corresponding results for
simulations on branching-process networks with a power-
law out-degree distribution (with exponent −2.1015 and
maximum-allowed degree of 1000, resulting in mean degree
4). These trees are very different from the Barabási–Albert
networks, which contain considerable clustering and more
complicated network structure. For simulations on these trees,
backward contact tracing is the more efficient contact tracing
strategy for both the constant-infectiousness [Fig. 9(a)] and
skewed-infectiousness model [Fig. 9(b)].
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