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ABSTRACT

Consider n identical Kuramoto oscillators on a random graph. Specifically, consider Erdős–Rényi random graphs in which any two oscillators
are bidirectionally coupled with unit strength, independently and at random, with probability 0 ≤ p ≤ 1. We say that a network is globally
synchronizing if the oscillators converge to the all-in-phase synchronous state for almost all initial conditions. Is there a critical threshold for
p above which global synchrony is extremely likely but below which it is extremely rare? It is suspected that a critical threshold exists and is
close to the so-called connectivity threshold, namely, p ∼ log(n)/n for n � 1. Ling, Xu, and Bandeira made the first progress toward proving
a result in this direction: they showed that if p � log(n)/n1/3, then Erdős–Rényi networks of Kuramoto oscillators are globally synchronizing
with high probability as n → ∞. Here, we improve that result by showing that p � log2

(n)/n suffices. Our estimates are explicit: for example,
we can say that there is more than a 99.9996% chance that a random network with n = 106 and p > 0.011 17 is globally synchronizing.

Published under an exclusive license by AIP Publishing. https://doi.org/10.1063/5.0090443

Random graphs are fascinating topologies on which to study the

dynamics of coupled oscillators. Despite the statistical nature of

random graphs, coherent synchronization seems to be ubiqui-

tous above a critical threshold. To investigate this, we consider

the homogeneous version of the Kuramoto model in which all

n oscillators have the same intrinsic frequency. For simplicity,

the oscillators are arranged on an Erdős–Rényi random graph

in which any two oscillators are coupled with unit strength by

an undirected edge, independently at random, with some prob-

ability 0 ≤ p ≤ 1; however, our proof strategy can be applied to

other random graph models too. We say that a network is globally

synchronizing if the oscillators converge to the all-in-phase syn-

chronous state for almost all initial conditions. For what values

of p is an Erdős–Rényi random network very likely to be globally

synchronizing? Here, we prove that p � log2(n)/n as n → ∞ is

a sufficient condition. Our proof uses trigonometric inequalities

and an amplification argument involving the first two moments

of the oscillator phase distribution that must hold for any stable

phase-locked state. Specifically, we show that the spectral norms

of the mean-centered adjacency and graph Laplacian matrix can

be used to guarantee that a network is globally synchronizing. Our

analysis is explicit, and we can reason about random networks of

finite, practical size.

I. INTRODUCTION

Networks of coupled oscillators have long been studied in biol-
ogy, physics, engineering, and nonlinear dynamics.1–13 Recently,
they have begun to attract the attention of other communities as
well. For example, oscillator networks have been recognized as
having the potential to yield “beyond-Moore’s law” computational
devices14 for graph coloring,15 image segmentation,16 and approxi-
mate maximum graph cuts.17 They have also become a model prob-
lem for understanding the global convergence of gradient descent in
nonlinear optimization.18 In such settings, global issues come to the
fore. When performing gradient descent, for instance, one typically
wants to avoid getting stuck in local minima. Conditions to enforce
convergence to the global minimum then become desirable. Like-
wise, conditions to enforce the global synchrony of oscillators play
an analogous role in dynamical systems theory.

We say that a network of oscillators globally synchronizes if it
converges to a state for which all the oscillators are in phase, start-
ing from all initial conditions except a set of measure zero. Until
recently, only a few global synchronization results were known for
networks of oscillators.4,5 These results were restricted to complete
graphs, in which each oscillator is coupled to all the others. In the
past decade, however, several advances have been made for a wider
class of network structures, starting with work by Taylor,19 who
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proved that if each oscillator in a network of identical Kuramoto
oscillators is connected to at least 94% of the others, the network
will fall into perfect synchrony for almost all initial conditions, no
matter what the topology of the network is like in other respects.
Taylor’s result was strengthened by Ling et al.18 in 2018, and further
progress has been made since then.20,21

Ling et al.18 also made a seminal advance in the study of
random networks. They considered identical Kuramoto oscillators
on an Erdős–Rényi random graph,22 in which any two oscilla-
tors are coupled with unit strength, independently and at random,
with probability 0 ≤ p ≤ 1; otherwise, the oscillators are uncoupled.
They showed that if p � log(n)/n1/3, then with high probability, the
network is globally synchronizing as n → ∞.

The open question is to find and prove the sharpest result along
these lines. Intuitively, as one increases the value of p from 0 to 1, one
expects to find a critical threshold above which global synchrony is
extremely likely and below which it is extremely rare.

At the very least, for global synchrony to be ubiquitous, p must
be large enough to ensure that the random network is connected,
and from the theory of random graphs,22 we know that connected-
ness occurs with high probability once p > (1 + ε) log(n)/n for any
ε > 0. Therefore, the critical threshold for global synchronization
cannot be any smaller than this connectivity threshold and is apt to
be a little above. On the basis of numerical evidence, Ling et al.18 con-
jectured that if p � log(n)/n, then Erdős–Rényi graphs are globally
synchronizing as n → ∞, but nobody has proven that yet. The chal-
lenge is to see how close one can get. In this paper, we come within
a factor of log(n) and prove that p � log2

(n)/n is sufficient to give
global synchrony with high probability.

We study the homogeneous Kuramoto model19,23,24 in which
each oscillator has the same frequency ω. By going into a rotating
frame at this frequency, we can set ω = 0 without loss of gener-
ality. Then, phase-locked states in the original frame correspond
to equilibrium states in the rotating frame. Therefore, to explore
the question that concerns us, it suffices to study the following
simplified system of identical Kuramoto oscillators:

dθj

dt
=

n
∑

k=1

Ajk sin
(

θk − θj

)

, 1 ≤ j ≤ n, (1)

where θj(t) is the phase of oscillator j (in the rotating frame)
and the adjacency matrix A is randomly generated. In particular,
Ajk = Akj = 1 with probability p, with Ajk = Akj = 0 otherwise,
independently for 1 ≤ j, k ≤ n. Thus, all interactions are assumed
to be symmetric, equally attractive, and of unit strength. (The
assumption that all interactions are equally attractive is made for
convenience. We expect our arguments and results below can be
generalized to attractive interactions of non-uniform strength.) We
take the unusual convention that the network can have self-loops
so that oscillator i is connected to itself with probability p; i.e.,
P
[

Ajj = 1
]

= p. Since sin(0) = 0, this convention does not alter the
dynamics of the oscillators, but it does make proof details easier to
write down.

Finally, since the adjacency matrix A is symmetric, we know
that (1) is a gradient system.23,24 Thus, all the attractors of (1) are
equilibrium points. Therefore, we do not need to concern ourselves
with the possibility of more complicated attractors, such as limit

cycles, tori, chimera states, or strange attractors. However, one slight
complication is that the equilibria are not isolated; each equilibrium
point lies on a subspace of equilibria because of the rotational sym-
metry of the Kuramoto model. Specifically, if θ = (θ1, . . . , θn) is an

equilibrium, then so is θ̂ = (θ1 + a, . . . , θn + a) for any real number
a. Despite this non-generic feature, the long-term dynamics are sim-
ple. Since the dynamics of the oscillators is governed by a gradient
system and the gradient is zero along these subspaces of equilibria,
each solution of (1) will still converge to an equilibrium point (that
happens to lie on a subspace of equilibria). In fact, since the time
derivative of

∑n
j=1 θj(t) is zero, the average of the θj’s remains con-

stant over time with the constant being determined by the initial
conditions. This means that one can assume that the dynamics of
the oscillators is restricted to a hyperplane on which there is a unique
all-in-phase state. When we say “the all-in-phase state,” we mean the
unique one in this invariant hyperplane.

We find it helpful to visualize the oscillators on the unit circle,
where oscillator j is positioned at the coordinate [cos(θj), sin(θj)].
From this perspective, a network is globally synchronizing if start-
ing from any initial positions (except a set of measure zero), all the
oscillators eventually end up at the same point on the circle. Due to
periodicity, we assume that the phases, θj, take values in the interval
[−π ,π).

One cannot determine whether a network is globally synchro-
nizing by numerical simulation of (1), as it is impossible to try all
initial conditions. Of course, one can try millions of random initial
conditions of the oscillators’ phases and then watch the dynamics
of (1). However, even if all observed initial states eventually fall into
the all-in-phase state, one cannot conclude that the system is glob-
ally synchronizing because other stable equilibria could still exist;
their basins might be minuscule but could nevertheless have a pos-
itive measure. These small basins of attraction are very difficult to
detect with random initial conditions.

With that caveat in mind, we note that such numerical exper-
iments have been conducted, and they tentatively suggest that
p � log(n)/n is sufficient for global synchronization.18 In this paper,
we investigate global synchrony via a theoretical study. We show
that p � log2

(n)/n is good enough to ensure global synchroniza-
tion with high probability, improving on p � log(n)/n1/3 proved by
Ling et al.,18 and bringing us closer to the connectivity threshold of
Erdős–Rényi graphs.

Although we focus on Erdős–Rényi graphs, many of the
inequalities we derive hold for any random or deterministic net-
work. To highlight this, we state many of our findings for a general
graph G and a general parameter p ∈ R. In the end, we restrict our-
selves back to Erdős–Rényi graphs and take p to be the probability
of a connection between any two oscillators.

Our results depend on both the adjacency matrix A and the
graph Laplacian matrix L = D − A, where D is a diagonal matrix
and Dii is the degree of vertex i (counting self-loops). For any p ∈ R,
denote the shifted adjacency and the graph Laplacian matrix by

1A = A − pJn, 1L = L + pJn − npIn, (2)

where Jn is the n × n matrix of all ones and In is the n × n iden-
tity matrix. It is worth noting that for Erdős–Rényi graphs, the
shifts are precisely the expectation of the matrices as E [A] = pJn
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and E [L] = −pJn + npIn. Remarkably, we show that the global syn-
chrony of a network can be guaranteed by ensuring that the spectral
norms ‖1A‖ and ‖1L‖ satisfy particular inequalities. The spectral
norm of a symmetric matrix is the maximum eigenvalue in absolute
magnitude, and ‖1A‖ and ‖1L‖ are extensively studied in the ran-
dom matrix literature.25,26 We also find it appealing that the spectral
norm of the graph Laplacian matrix appears naturally in our analy-
sis, as it has been used previously to study the dynamics of networks
of oscillators27 as well as diffusion on graphs. From a high-level view-
point, we prove that global synchronization of a graph is a spectral
property, like many other graph properties.

While we focus in this paper on global synchronization of
identical oscillators, Medvedev and his collaborators have consid-
ered other aspects of synchronization for non-identical oscillators
on Erdős–Rényi graphs, as well as on other graphs, such as Cayley
and Watts–Strogatz graphs, often in the continuum limit.28–31 Their
findings have a similar overarching message that synchronization
occurs spontaneously above a critical threshold.

II. OVERVIEW OF OUR PROOF STRATEGY

To prove that a random graph is globally synchronizing with
high probability, we bridge the gap between spectral graph theory
and coupled oscillator theory. The literature contains many good
probabilistic estimates for the spectral norm of a random graph’s
adjacency and graph Laplacian matrices, which we use to control
the long-time dynamics of (1). The key to our proof is to establish
conditions on these two spectral norms that force any stable equi-
librium to have phases that lie within a half-circle. Confining the
phases in this way then guarantees global synchronization because it
is known that the only stable equilibrium of (1) with phases confined
to a half-circle is the all-in-phase synchronized state.8,23

Our first attempt at controlling the phases is the inequality we
state below as (9), which can be used to guarantee that very dense
Erdős–Rényi graphs are globally synchronizing with high probabil-
ity. As an aside, when p = 1 inequality (9) together with (4) provides
a new proof that a complete graph of identical Kuramoto oscillators
is globally synchronizing.5 A similar inequality to (9) was derived
by Ling et al.18 to show that p � log(n)/n1/3 is sufficient for global
synchrony with high probability.

To improve on (9), our argument becomes more intricate. We
carefully examine the possible distribution of edges between oscil-
lators whose phases lie on different arcs of the circle and show that
any equilibrium is destabilized if there are too many edges between
oscillators that have disparate phases (see Lemma 8 and Fig. 2).

III. BOUNDS ON THE ORDER PARAMETER AND ITS
HIGHER-ORDER MOMENTS

An important quantity in the study of Kuramoto oscillators is
the so-called complex order parameter, ρ1. The magnitude of ρ1 is
between 0 and 1 and measures the synchrony of the oscillators in
the network. We find it useful to also look at second-order moments
of the oscillator distribution for analyzing the synchrony of ran-
dom networks. Higher-order moments are also called Daido order
parameters and can be used to analyze oscillators with all-to-all
coupling, corresponding to a complete graph.9,32–34

For an equilibrium θ = (θ1, . . . , θn), we define the first- and
second-order moments as

ρ1 = 1

n

∑

j

eiθj , ρ2 = 1

n

∑

j

e2iθj .

(For convenience, we use the notation
∑

j to mean
∑n

j=1.) Without

loss of generality, we may assume that the complex order parameter
ρ1 is real-valued and nonnegative. To see this, write ρ1 = |ρ1|eiψ for

some ψ . Then, θ̂ = (θ1 − ψ , . . . , θn − ψ) is also an equilibrium of
(1) with the same stability properties as θ since (1) is invariant under
a global shift of all phases by ψ . Therefore, for the rest of this paper,
we assume that ψ = 0 for any equilibrium of interest with 0 ≤ ρ1

≤ 1. This allows us to select a representative equilibrium point from
its associated subspace of equilibria. When ρ1 = 1, the oscillators
are in pure synchrony, and when ρ1 ≈ 0, the phases are scattered
around the unit circle without a dominant phase.

To avoid working with complex numbers, it is convenient to
consider the quantity |ρ2|2. For m = 1, 2, we have

|ρm|2 = 1

n2





∑

k

eimθk
∑

j

e−imθj



 = 1

n2

∑

j,k

cos(m(θk − θj)). (3)

By analyzing ρ2
1 and |ρ2|2, one hopes to witness the rough statistics

of an equilibrium to understand its potential for synchrony without
concern for its precise pattern of phases.

Let qθ = (eiθ1 , . . . , eiθn)
>

and note that

∑

j,k

Ajk cos(θk − θj) = qθ
>Aqθ ,

where A is the adjacency matrix, qθ is the complex conjugate of
qθ , and > denotes the transpose of a vector. Since cos2(θk − θj)

= 1
2
(cos(2(θk − θj))+ 1), we have

∑

j,k

Ajk cos2(θk − θj) = 1

2
q2θ

>Aq2θ + 1

2
1>A1,

where 1 is the vector of all ones and q2θ = (ei2θ1 , . . . , ei2θn)
>

.
We would like to know when a stable equilibrium is close to the

all-in-phase state, and we know this when ρ1 is close to 1. Therefore,
we begin by deriving a lower bound on ρ1 for any stable equilibrium
of (1). Similar inequalities involving ρ2

1 and |ρ2|2 have been used to
demonstrate that sufficiently dense Kuramoto networks are globally
synchronizing.18,21

Lemma 1. Let G be a connected graph and θ a stable equilib-
rium of (1). For any p > 0, we have

ρ2
1 ≥ 1 + |ρ2|2

2
− 2‖1A‖

np
, (4)

where the mean-shifted adjacency matrix,1A, is defined in (2).
Proof. Since1A = A − pJn, we have

qθ
>Aqθ = pqθ

>Jnqθ + qθ
>1Aqθ .
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One finds that qθ
>Jnqθ = n2ρ2

1 by (3) and that |qθ>1Aqθ |
≤ ‖1A‖‖qθ‖2 ≤ n‖1A‖; therefore,

∣
∣
∣
∣
∣
∣

∑

j,k

Ajk cos(θk − θj)− n2pρ2
1

∣
∣
∣
∣
∣
∣

≤ n‖1A‖. (5)

By the same reasoning for q2θ
>Aq2θ , we find that

∣
∣
∣
∣
∣
∣

∑

j,k

Ajk cos(2(θk − θj))− n2p|ρ2|2
∣
∣
∣
∣
∣
∣

≤ n‖1A‖.

Moreover, 1>A1=1>1A1+n2p; therefore,
∣
∣1>A1−n2p

∣
∣ ≤n‖1A‖.

We conclude that
∣
∣
∣
∣
∣
∣

∑

j,k

Ajk cos2(θk − θj)− n2p
|ρ2|2 + 1

2

∣
∣
∣
∣
∣
∣

≤ n‖1A‖. (6)

Since θ is a stable equilibrium for (1), it is known that
∑

j,k

Ajk cos(θk − θj)(1 − cos(θk − θj)) ≥ 0,

as shown by Ling et al.18 on p. 1893 of their paper. From (5) and (6),
we must have

n2pρ2
1 + n‖1A‖ ≥ n2p

|ρ2|2 + 1

2
− n‖1A‖,

which is equivalent to the statement of the lemma. �

To maximize the lower bound on ρ2
1 from Lemma 1, one can

optimize over p. For a random graph where each edge has a fixed
probability of being present, independently of the other edges, we
usually just select p to be that probability. Regardless, to make the
lower bound on ρ2

1 in Lemma 1 useful, we need to find a nontrivial
lower bound on |ρ2|2 since this quantity appears in the right hand
side of (4). To obtain such a bound, we use the following technical
lemma.

Lemma 2. Let G be a connected graph and θ a stable equilib-
rium. We have

‖1Aqθ‖2 ≥ n2p2ρ2
1





∑

j

sin2(θj)+
∑

j,cos(θj)≤0

cos2(θj)



 ,

where ‖ · ‖ is the Euclidean norm.
Proof. Select any j such that 1 ≤ j ≤ n. From the fact that

θ is an equilibrium, we have
∑

k Ajk sin(θk − θj) = 0. Moreover,
because the equilibrium is stable, we also have

∑

k Ajk cos(θk − θj)

≥ 0, which follows as the diagonal entries of the Hessian matrix
must be nonnegative at a stable equilibrium [see (2.3) of Ling
et al.18]. These inequalities can be written as

Re
(

e−iθje>
j Aqθ

)

≥ 0 and Im
(

e−iθje>
j Aqθ

)

= 0,

where ej is the jth unit vector. Since 1A = A − pJn and using that
Jnqθ = nρ11, we find that

∣
∣
∣Im

(

e−iθje>
j 1Aqθ

)∣
∣
∣ = npρ1

∣
∣sin(θj)

∣
∣ .

If cos θj ≤ 0, then we also have

Re (e−iθje>
j 1Aqθ ) =

∑

k

(Ajk − p) cos(θk − θj)

=
∑

k

Ajk cos(θk − θj)− npρ1 cos θj

≥ npρ1

∣
∣cos θj

∣
∣ .

The inequality in the lemma follows by squaring the above
inequalities, summing over j, and noting that |e−iθj | = 1. �

To see how Lemma 2 can be used to derive a lower bound
on |ρ2|2 for any stable equilibrium state, we start by drop-
ping the second sum in Lemma 2. Using the upper bound
‖1Aqθ‖2 ≤ n‖1A‖2, we find that

∑

j sin2(θj) ≤ ‖1A‖2/(np2ρ2
1 ).

Since nRe(ρ2) =
∑

j cos(2θj) =
∑

j

(

1 − 2 sin2(θj)
)

, we have the fol-

lowing lower bound on |ρ2|:

|ρ2| ≥ Re(ρ2) = 1

n

∑

j

(

1 − 2 sin2(θj)
)

≥ 1 − 2‖1A‖2

n2p2ρ2
1

. (7)

From (4) and (7), we can deduce that when ‖1A‖ � np, then ρ1

and |ρ2| must both be close to 1. Intuitively, this should mean that
the corresponding stable equilibrium, θ , must be close to the all-in-
phase state with the possible exception of a small number of stray
oscillators. However, our goal is to prove global synchrony, which
is a more stringent condition, and we must completely rule out the
existence of any stray oscillators.

To precisely control the number of stray oscillators, we define
a set of indices for oscillators whose phases lie outside of a sector of
half-angle φ (centered about the all-in-phase state),

Cφ =
{

k : cos(θk) ≤ cos(φ), 1 ≤ k ≤ n
}

, (8)

for any angle 0 ≤ φ ≤ π (see Fig. 1). If we can prove that Cπ/2 is
empty, then we know that all the phases in the equilibrium state lie
strictly inside a half-circle. That would give us what we want because
by a basic theorem for the homogeneous Kuramoto model, the only
stable equilibrium θ with all its phases confined to a half-circle is
the all-in-phase state.8,23 In terms of bounds, since |Cπ/2| is integer-
valued, if we can show that |Cπ/2| < 1, then we know that Cπ/2 is the
empty set.

From Lemma 2 and ‖1Aqθ‖2 ≤ n‖1A‖2, we find that

n‖1A‖2 ≥ n2p2ρ2
1

∑

j∈Cφ

(

sin2(θj)+ δ|θj|>π/2 cos2(θj)

)

≥ n2p2ρ2
1 |Cφ | sin2(φ), (9)

where δ|θj|>π/2 is 1 if |θj| > π/2 and 0 otherwise. Therefore, by

plugging in φ = π/2, we see that |Cπ/2| ≤ ‖1A‖2/(np2ρ2
1 ). Thus, if

‖1A‖2 < np2ρ2
1 , then Cπ/2 must be the empty set and the network is

globally synchronizing.
Unfortunately, this kind of reasoning is not sufficient to prove

global synchrony for graphs of interest to us here. For example, for
an Erdős–Rényi random graph, we know that ‖1A‖2 ≈ 4p(1 − p)n
with high probability for large n (see Sec. VI). Therefore, the upper
bound on |Cπ/2| is approximately 4(1 − p)/(pρ2

1 ), which for p < 1/2
is certainly not good enough to conclude that Cπ/2 is empty. Instead,
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FIG. 1. When viewing the phases of the oscillators on the unit circle, the set Cφ
contains the indices of stray oscillators whose phases have cosines less than or
equal to cos(φ). In the example shown here, we have eight oscillators, and only
the oscillator with phase θ3 has strayed outside the sector of half-angle φ. Hence,
Cφ = {3}.

we must further improve our bounds on |Cπ/2| by using a recursive
refinement strategy that we refer to as an “amplification” argument
(see Sec. V).

IV. BOUNDS ON THE NUMBER OF EDGES AND SIZES
OF SETS IN GRAPHS

The precise amplification argument that we use requires
bounds on the number of edges and sizes of vertex sets of a graph
expressed in terms of the spectral norms of 1A and 1L. It is worth
noting that these bounds hold for both deterministic and random
graphs. For a vertex set C of a graph G, we denote the characteristic
vector by vC; i.e., (vC)j = 1 if j ∈ C and (vC)j = 0 if j 6∈ C. We use v>

C

to denote the vector transpose of vC. We write |C| to be the num-
ber of vertices in C and denote the number of (directed) edges in G
starting at vertex set C and ending at C′ as EC,C′ . Therefore, EC,C is
twice the number of (undirected) edges between vertices in C. For
Erdős–Rényi graphs, one expects to have EC,C′ ≈ p|C||C′|. However,
for our argument to work, expectations are not adequate; instead, we
need to have bounds on the difference between EC,C′ and p|C||C′|.
The results in this section are proved by classical techniques, and
closely related bounds are well known. We give the proofs of the
precise inequalities that we need so that the paper is self-contained.

We first show that for any vertex set C, the number of edges
connecting a vertex in C to another vertex in C deviates from p|C|2
by at most ‖1A‖|C| for any 0 ≤ p ≤ 1.

Lemma 3. Let G be a graph of size n with vertex set VG and
adjacency matrix A. For any 0 ≤ p ≤ 1, we have

max
C⊆VG

∣
∣EC,C − p|C|2

∣
∣

|C| ≤ ‖1A‖,

where1A is defined in (2).
Proof. Let vC be the characteristic vector for C. By the min-max

theorem,35 we have maxC⊆VG
(v>

C1AvC)/(v
>
C vC) ≤ ‖1A‖. Finally, we

note that 1A = A − pJn, v>
C vC = |C|, v>

C JnvC = |C|2, and v>
C AvC

= EC,C. �

Lemma 3 controls the number of edges connecting a set of ver-
tices. The following result controls the number of edges leaving a
vertex set. We denote the vertices of G that are not in C1 by VG \ C1.

Lemma 4. Let G be a graph of size n with vertex set VG and
graph Laplacian L. For any 0 ≤ p ≤ 1, we have

max
C1⊆VG

∣
∣EC1 ,C1

− p|C1||C1|
∣
∣

|C1||C1|
≤ ‖1L‖

n
,

where1L is defined in (2) and C1 = VG \ C1.
Proof. Let vC1 and vC1

be the characteristic vectors for the sets

C1 and C1, respectively, and w = (|C1|/n)vC1 − (|C1|/n)vC1
. By the

min-max theorem,35 we have

max
C1⊆VG

w>1Lw

w>w
≤ ‖1L‖.

Finally, we note that 1L = L + pJn − npIn, w>w = |C1|2|C1|
n2

+ |C1||C1|2
n2 = |C1||C1|

n
as |C1| + |C1| = n, w>(pJn − npIn)w = −p|C1|

|C1|, and w>Lw = EC1 ,C1
. �

When a bound on ‖1L‖ is available, Lemma 4 can be used to
ensure that G is connected. In particular, Lemma 4 tells us that a
graph of size n is connected if ‖1L‖ < np for some 0 ≤ p ≤ 1.

Since 0 ≤ EC1 ,C1
≤ |C1||C1|, we know that

∣
∣EC1 ,C1

− p|C1||C1|
∣
∣

≤ max{p, 1 − p}|C1||C1|. Therefore, Lemma 4 is only a useful bound
when ‖1L‖ � np. We can take Lemma 4 a step further and bound
the number of edges between any two disjoint sets of vertices of G
using ‖1L‖. We denote the union of the vertex sets C1 and C2 by
C1 t C2.

Lemma 5. Let G be a graph of size n with vertex set VG and
graph Laplacian matrix L. For any 0 ≤ p ≤ 1, we have

max
C1⊆VG ,C2⊆VG\C1 ,

C3=VG\(C1tC2)

∣
∣EC1 ,C2 − p|C1||C2|

∣
∣

|C1||C2| + |C1||C3| + |C2||C3|
≤ ‖1L‖

n
,

where1L is defined in (2).
Proof. For any partitioning of the vertices of G into three sets

C1, C2, and C3, we have 2EC1 ,C2 = EC1 ,C2tC3 + EC2 ,C1tC3 − EC3 ,C1tC2 .
By Lemma 4, EC1 ,C2tC3 is bounded between p(|C1||C2| + |C1||C3|)
± ‖1L‖|C1|(|C2| + |C3|)/n, EC2 ,C1tC3 is bounded between p(|C2||C1|
+ |C2||C3|)± ‖1L‖|C2|(|C1| + |C3|)/n, and EC3 ,C1tC2 is bounded
between p(|C3||C1| + |C3||C2|)± ‖1L‖|C3|(|C1| + |C2|)/n. Hence,
EC1 ,C2 deviates from p|C1||C2| by less than ‖1L‖(|C1||C2|
+ |C2||C3| + |C1||C3|)/(2n). �

Lemmas 3 and 5 can be combined to obtain the following
result. We do not regard Theorem 6 as having significant indepen-
dent interest, but later, it is an important statement in the proof of
Corollary 9. It only deserves the status of a theorem in the sense that
it is a key technical step in our overall argument.

Chaos 32, 093119 (2022); doi: 10.1063/5.0090443 32, 093119-5

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Theorem 6. Let G be a graph of size n with adjacency matrix
A and graph Laplacian matrix L. Suppose that C1, C2, and C3 are
a partition of the vertices of G into three sets such that (i) EC1 ,C3

≤ λEC3 ,C3 for some number λ and (ii) |C2| < |C1|. Then, for any
0 ≤ p ≤ 1, we have

|C2| + |C3| ≥
(

n
(

p|C1| − pλ|C3| − λ‖1A‖
)

‖1L‖|C1|
− 1

)

|C3|,

where1A and1L are defined in (2).
Proof. By Lemma 3, EC3 ,C3 deviates from p|C3|2 by less

than ‖1A‖|C3|, and, by Lemma 5, EC1 ,C3 deviates from p|C1||C3|
by less than ‖1L‖(|C1||C2| + |C2||C3| + |C3||C1|)/n. Since EC1 ,C3

≤ λEC3 ,C3 , we must have

p|C1||C3| − ‖1L‖
n

(|C1||C2| + |C2||C3| + |C3||C1|)

≤ λ
(

p|C3|2 + ‖1A‖|C3|
)

.

By rearranging this inequality, we find that

|C2| + |C3| ≥
(

n
(

p|C1| − pλ|C3| − λ‖1A‖
)

‖1L‖|C1|
− |C2|

|C1|

)

|C3|.

The result follows as |C2| < |C1|. �

V. AMPLIFICATION ARGUMENT

We are finally ready for our amplification argument, which is a
way to improve the bounds on |Cπ/2| from (9). We first write down
a new inequality that holds for any stable equilibrium. We write it
down using a kernel function K that later allows us to improve our
argument with the aid of a computer (see Sec. IV D). For any stable
equilibrium θ = (θ1, . . . , θn) of (1), we know that it satisfies equilib-
rium and stability conditions. The equilibrium conditions are given
by
∑

j Ajk sin(θk − θj) = 0 for all 1 ≤ k ≤ n. In addition, stability

requires that the Hessian matrix [see (2.3) of Ling et al.18] associ-
ated with θ is a nonnegative definite matrix; i.e., it has nonnegative
eigenvalues.

The fact that the Hessian matrix has nonnegative eigenval-
ues can be used to form many useful inequalities. For example, if
HA(θ) is the Hessian matrix, then a stable equilibrium must satisfy
the Rayleigh quotient x>HA(θ)x ≥ 0 for any n × 1 vector x. In par-
ticular, selecting x = ek (the kth unit vector) implies that the kth
diagonal entry of HA(θ) is nonnegative. This yields the inequal-
ities e>

k HA(θ)ek =
∑

j Ajk cos(θk − θj) ≥ 0 for 1 ≤ k ≤ n. Next,

one can combine
∑

j Ajk sin(θk − θj) = 0 and
∑

j Ajk cos(θk − θj)

≥ 0 in tricky ways and then use trigonometric identities to simplify
the inequalities. After manipulating these inequalities for a while,
we find that it is beneficial to massage them differently depend-
ing on the values of θk and θj that appear in them. However, then,
having combined the inequalities in diverse ways, we notice that
they all share a common structure. To highlight this commonal-
ity, we express the various inequalities as a unified family of the
form

∑

j AjkK(θj, θk) ≥ 0, where K is defined piecewise to reflect its

dependence on its arguments.

Lemma 7. Let G be a graph with adjacency matrix A. Let K be
a kernel function defined on [−π ,π)× [−π ,π), given by

K(α,β) =









sin(|α| − |β|), |α|, |β| ≤ π

2
,

− cos(α), |α| ≤ π

2
, |β| > π

2
,

1, |α| > π

2
.

Then, any stable equilibrium θ of (1) must satisfy
∑

j AjkK(θj, θk) ≥ 0

for any 1 ≤ k ≤ n.
Proof. Let k be an integer between 1 and n. Due to periodic-

ity, we may assume that the phases, θj, take values in the interval
[−π ,π). We split the proof into three cases depending on the value
of θk.

Case 1: 0 ≤ θk ≤ π/2. We first show that sin(θj − θk)

≤ K(θj, θk) for all j by checking the three possible subcases:
(i) If 0 ≤ θj ≤ π/2, then sin(θj − θk) = sin(|θj| − |θk|) = K(θj, θk).
(ii) If |θj| > π/2, then sin(θj − θk) ≤ 1 = K(θj, θk). (iii) If −π/2
≤ θj < 0, then sin(θj − θk)= sin(|θj| − |θk| − 2|θj|)≤ sin(|θj| − |θk|)
= K(θj, θk), where the inequality holds because −π/2 ≤ |θj| − |θk|
≤ π/2 and 0 ≤ 2|θj| ≤ π . The inequality follows from the equilib-
rium condition

∑

j Ajk sin(θj − θk) = 0.

Case 2: −π/2 ≤ θk < 0. For this case, we begin by showing
that sin(θj − θk) ≥ −K(θj, θk) for all j by checking the three possi-
ble subcases: (i) If 0 ≤ θj ≤ π/2, then sin(θj − θk) = sin(|θj| − |θk|
+ 2|θk|) ≥ − sin(|θj| − |θk|) = −K(θj, θk), where the inequality
holds because −π/2 ≤ |θj| − |θk| ≤ π/2 and 0 ≤ 2|θk| ≤ π .
(ii) If |θj| > π/2, then sin(θj − θk) ≥ −1 = −K(θj, θk). (iii) If −π/2
≤ θj < 0, then sin(θj − θk) = sin(−|θj| + |θk|) = − sin(|θj| − |θk|)
= −K(θj, θk). The inequality follows from the equilibrium condition
∑

j Ajk sin(θj − θk) = 0.

Case 3: |θk| > π/2. From the fact that θ is an equilibrium,
we have

∑

j Ajk sin(θk − θj) = 0. Moreover,
∑

j Ajk cos(θk − θj)

≥ 0 because the diagonal entries of the Hessian matrix must be
nonnegative at a stable equilibrium [see (2.3) of Ling et al.18].
By a trigonometric identity, we find that 0 =

∑

k Ajk sin(θk − θj)

= sin(θk)
∑

j Ajk cos(θj)+ cos(θk)
∑

j Ajk sin(θj), and, hence,

∑

j

Ajk sin(θj) = sin(θk)

cos(θk)

∑

j

Ajk cos(θj), (10)

where we note that cos(θk) 6= 0 as θk 6= ±π/2. Moreover, from
another trigonometric identity, we have 0 ≤

∑

j Ajk cos(θk − θj)

= cos(θk)
∑

j Ajk cos(θj)+ sin(θk)
∑

j Ajk sin(θj), which together

with (10) gives
(

cos(θk)+ sin2(θk)

cos(θk)

)
∑

j

Ajk cos(θj) ≥ 0.

Multiplying this inequality by cos(θk) [note that cos(θk) < 0 as
|θk| > π/2] and using cos2(θk)+ sin2(θk) = 1, we conclude that
∑

j Ajk cos(θj) ≤ 0. To reach the desired inequality in the state-

ment of the lemma, we now check the two possible subcases:
(i) If |θj| ≤ π/2, then cos(θj) = −K(θj, θk). (ii) If |θj| > π/2,
then cos(θj) ≥ −1 = −K(θj, θk). This means that 0 ≥

∑

j Ajk cos(θj)

≥ −
∑

j AjkK(θj, θk) as desired. �

In preliminary work, we have found indications that Lemma 7
can be used to prove stronger results than those we report below;
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see Sec. IV D for further discussion. However, we are not sure
yet how to write down an argument that uses the full strength of
Lemma 7 in a readily digestible fashion. So for now, we use the fol-
lowing simplified lemma instead. It is a key step in our amplification
argument.

Lemma 7 shows us that if θ is a stable equilibrium, then any
oscillator with phase > π/2 in absolute value cannot be coupled to
too many oscillators with phases < π/2. This is because K(α,β) =
− cos(α) < 0 when |α| < π/2 and |β| > π/2. If there are too many
negative contributions in the sum

∑

j AjkK(θj, θk), then it will end up

negative, which is not allowed for a stable equilibrium. To make this
precise, we can use our sets Cβ in (8).

Lemma 8. Let G be a graph and θ a stable equilibrium of (1),
and let 0 < α < β < π/2. We have

ECβ ,Cβ ≥ sin(β − α)ECβ ,Cα ,

where Cα and Cβ are defined in (8). Here, Cα = VG \ Cα .
Proof. This follows from the previous lemma by carefully

bounding K(θj, θk) when k ∈ Cβ (which implies that |θk| > β). We
check the three possible subcases: (i) If j ∈ Cβ , then we might
have |θj| > π/2; therefore, the best we can say is K(θj, θk) ≤ 1.
(ii) If j ∈ Cα \ Cβ (which implies that |θj| ≤ π/2), then either
|θk| > π/2 so that K(θj, θk) = −cos(θj) ≤ 0 or β < |θk| ≤ π/2 so
that K(θj, θk) = sin(|θj| − |θk|) ≤ 0 as |θj| ≤ |θk|. Either way, we
have K(θj, θk) ≤ 0 when j ∈ Cα \ Cβ . (iii) If j 6∈ Cα (which implies
that |θj| < α), then either |θk| > π/2 so that K(θj, θk) = − cos(θj)

≤ −cos(α) = −sin(π/2 − α) ≤ −sin(β − α) or β < |θk| ≤ π/2
so that K(θj, θk) = sin(|θj| − |θk|) ≤ −sin(β − α). Either way,
K(θj, θk) ≤ −sin(β − α) when j 6∈ Cα . We conclude that

K(θj, θk) ≤









1, j ∈ Cβ ,

0, j ∈ Cα \ Cβ ,

−sin(β − α), j 6∈ Cα ,

and, hence, by Lemma 7, we have

0 ≤
∑

k∈Cβ

∑

j

AjkK(θj, θk) ≤
∑

j,k∈Cβ

Ajk

︸ ︷︷ ︸

=ECβ ,Cβ

− sin(β − α)
∑

j6∈Cα ,k∈Cβ

Ajk

︸ ︷︷ ︸

=ECβ ,Cα

,

as desired. �

We now show that if θ is a stable equilibrium and |Cα| is small,
then |Cβ | must be even smaller for 0 < α < β < π/2; otherwise, the
oscillators in the set Cα \ Cβ would destabilize the equilibrium (see
Fig. 2). Since we know that |Cβ | ≤ |Cα|, the next bound is useful
when ‖1L‖/(np) > 1/4.

Corollary 9. Let G be a graph of size n, θ a stable equilibrium
of (1), and 0 < p ≤ 1. If for some 0 < α < β < π/2, we have |Cα|
≤ n/2, |Cβ | ≤ 2‖1A‖/p, and sin(β − α) ≥ 12‖1A‖/(np), then

|Cβ | ≤
(

np

2‖1L‖
− 1

)−1

|Cα|,

where1A and1L are defined in (2) and Cα and Cβ in (8).
Proof. Let λ = np/(12‖1A‖). By Lemma 8, we have ECβ ,Cα

≤ (1/ sin(β − α))ECβ ,Cβ ≤ λECβ ,Cβ . Hence, by Theorem 6 (with

FIG. 2. Here, Cα = {3, 5, 6, 8} and Cβ = {3, 5}. We illustrate a hypothetical
equilibrium such that Cπ/2 is empty and, therefore, must be unstable; however,
it might be that (9) is not tight enough to show that |Cπ/2| < 1. To still conclude
that Cπ/2 is empty, we first show in Lemma 8 that for an equilibrium to be stable,
there must be enough edges coupling the oscillators in Cβ together, compared to

those between Cβ and Cα . For the illustrated equilibrium, we are comparing the
number of internal edges between oscillators 3 and 5 and the number of outgoing
edges to oscillators 1, 2, and 7.

C1 = Cα , C2 = Cα \ Cβ , and C3 = Cβ), we find that

|Cα| ≥
(

n(p|Cα| − pλ|Cβ | − λ‖1A‖)
‖1L‖|Cα|

− 1

)

|Cβ |

=
(

np

‖1L‖
− nλ(p|Cβ | + ‖1A‖)

‖1L‖|Cα|
− 1

)

|Cβ |

≥
(

np

2‖1L‖
− 1

)

|Cβ |,

where the last inequality holds if λ ≤ ‖1L‖|Cα |
n(p|Cβ |+‖1A‖)

(
np

2‖1L‖

)

. Since

|Cα| ≥ n/2 and |Cβ | ≤ 2‖1A‖/p, we find that λ = np/(12‖1A‖)
satisfies this upper bound. �

Note that it is only possible to have an α and β such
that sin(β − α) ≥ 12‖1A‖/(np) in Corollary 9 when ‖1A‖/(np)
< 1/12. Corollary 9 can be used in a recursive fashion to improve
the bound on |Cπ/2|. Below, we start at α and incrementally increase
β to conclude that Cπ/2 is empty.

Lemma 10. Let G be a graph of size n, θ a stable equilibrium
of (1), 0 < p ≤ 1, ‖1A‖/(np) < 1/12, and ‖1L‖/(np) < 1/4. If for
some α < π/2, we have (i) |Cα| < 2‖1A‖/p and (ii),

π/2 − α

sin−1
(

12‖1A‖
np

) >
log(|Cα|)

log
(

np

2‖1L‖ − 1
) + 1,

then Cπ/2 is empty and θ is the all-in-phase state. [Here, if Cα is empty,
then take |Cα| = 0 and log(0) = −∞.]
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Proof. Set βk = α + k sin−1
(

12‖1A‖/(np)
)

. Since we need
βk < π/2, we can take 0 ≤ k ≤ M, where

M =







π/2 − α

sin−1
(

12‖1A‖
np

) − 1







.

By Corollary 9 and the fact that |Cα| < 2‖1A‖/p < n/6 (which
ensures that |Cα| ≤ n/2), we have

|CβM
| ≤

(
np

2‖1L‖
− 1

)−1

|CβM−1
|

...

≤
(

np

2‖1L‖
− 1

)−M

|Cα|.

Since |Cπ/2| ≤ |CβM
| to conclude that |Cπ/2| < 1, we need

(np/(2‖1L‖)− 1)−M|Cα| < 1. This is guaranteed when M > log
(|Cα|)/ log(np/(2‖1L‖)− 1) and the result follows. �

Finally, we summarize our findings. In particular, we can now
provide a list of technical criteria that ensure that the network is
globally synchronizing.

Theorem 11. Let G be a graph with n vertices and 0 < p < 1.
If

• (i) ‖1A‖/(np) < 1/12,
• (ii) ‖1L‖/(np) < 1/4, and
• (iii)

π/4

sin−1
(

12‖1A‖
np

) >
log(n/6)

log
(

np

2‖1L‖ − 1
) + 1,

then G is globally synchronizing.
Proof. Let θ be any stable equilibrium of (1) on G. By combin-

ing (4) and (7), we find that

ρ6
1 − (1 − 2a)ρ4

1 + 2a2ρ2
1 − 2a4 ≥ 0, (11)

where a = ‖1A‖/np. Since a < 1/12 by (i), one can check that
(11) implies that ρ2

1 > a. [In fact, if a < 1/5, then (11) implies
that ρ2

1 > a.] Now, select φ = π/4. By (9), we find that |Cπ/4|
≤ 2‖1A‖2/(np2ρ2

1 ) < 2‖1A‖/p as ρ2
1 > ‖1A‖/(np). Hence, we

find that |Cπ/4| ≤ n/6. By taking α = π/4 in Lemma 10 and as
(ii) holds, we find that θ is the all-in-phase state when (iii) is
satisfied. �

Theorem 11 shows that a graph’s global synchrony can be
ensured by the size of ‖1A‖ and ‖1L‖ alone. This is particularly
beneficial for random networks as ‖1A‖ and ‖1L‖ are quantities
that are studied in the random matrix literature. For random net-
works, hypotheses (i)–(iii) become inequalities involving random
variables, namely, ‖1A‖ and ‖1L‖. It is crucial to appreciate that
these inequalities are not independent of each other, and we must be
careful about this dependence when applying Theorem 11.

VI. THE GLOBAL SYNCHRONY OF ERDŐS–RÉNYI
GRAPHS

The random matrix literature involves a large array of bounds
on ‖1A‖ and ‖1L‖, and navigating the literature can be daunting

to outsiders. The main thing to keep in mind is that some of these
bounds are asymptotic in nature and only hold for enormously large
n, while others are explicit (but weaker) in n. We find that both kinds
of bounds are useful. If we want to say something about a random
graph for a given n, then we need explicit bounds; whereas if we
are interested in the asymptotic properties, then we may use either
explicit or asymptotic bounds.

A. Explicit bounds to derive explicit statements

We begin with a pair of explicit bounds on ‖1A‖ and ‖1L‖ for
Erdős–Rényi random graphs with probability 0 < p < 1. In 2019,
Ling et al.18 established that (also, see Theorem 6.6.1 of Ref. 36)

P
[

‖1A‖ ≥ f(n, p)
]

< 2n−1, P
[

‖1L‖ ≥ 2f(n, p)
]

< 2n−1, (12)

where f(n, p) = 2
√

n log(n) p(1 − p)+ 4 log(n)/3. By applying the
union bound to the pair of inequalities in (12), we conclude that both
‖1A‖ ≥ f(n, p) and ‖1L‖ ≥ f(n, p) hold with probability> 1 − 4/n.

Next, we use this conclusion to prove that an Erdős–Rényi
graph for a particular n and p globally synchronizes with high
probability. For example, let n = 106. Then, we try a range of
p from 0 < p < 1 and test for which p all three hypotheses in
Theorem 11 hold. If the three hypotheses all hold, then the
graph is globally synchronizing. By following this procedure, we
find that for p > 0.256, the corresponding Erdős–Rényi graph is
globally synchronizing with probability > 1 − 4/n. More specifi-
cally, when n = 106 and p > 0.256, one can calculate that f(n, p)/
(np) < 1/12 and 2f(n, p)/(np) < 1/4. Hence, with probability
> 1 − 4/n = 0.999 996, hypotheses (i) and (ii) in Theorem 11 hold.
[In fact, hypotheses (i) and (ii) hold for much lower values of p, and
hypothesis (iii) is the reason that we need p > 0.256.]

It is at this point that we need to be careful about the lack of
independence of the three hypotheses in Theorem 11. In particular,
we do not check (iii) directly as this would involve messy condi-
tional probability calculations. Instead, we find it easier to check
hypothesis (iii) by checking the following deterministic inequality:

π/4

sin−1
(

12f(n,p)

np

) >
log(n/6)

log
(

np

4f(n,p)
− 1

) + 1. (13)

This deterministic inequality implies (iii) provided that ‖1A‖
≤ f(n, p) and ‖1L‖ ≤ f(n, p), which we already know hold simulta-
neously with probability > 1 − 4/n. Next, using Theorem 11 with
f(n, p) replaced by ‖1A‖ and ‖1L‖ on the left and right of the
inequality, respectively, we conclude that an Erdős–Rényi graph
with n = 106 and p > 0.256 is globally synchronizing with proba-
bility > 0.999 996. By the same argument, we find that for n = 107,
p > 0.0474 suffices.

B. Explicit bounds to derive asymptotic statements

Next, we leverage the explicit probability bounds in (12) to
derive an asymptotic statement about the global synchrony of
Erdős–Rényi graphs.

Theorem 12. An Erdős–Rényi graph of size n is globally
synchronizing with high probability> 1 − 4/n provided that

p � log3
(n)/n.
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Proof. If we can establish that all three hypotheses in
Theorem 11 hold, then the Erdős–Rényi graph is globally syn-
chronizing. As before, by applying the union bound to the pair of
inequalities in (12), we conclude that both ‖1A‖ ≤ f(n, p) and ‖1L‖
≤ f(n, p) hold with probability > 1 − 4/n. Then, by taking p of the
form p = c logγ (n)/n for some c > 0 and γ > 1, we see that f(n, p)

= O(log1/2+γ /2
(n)) as n → ∞. Hence, we find that f(n, p)/(np)

= O(log1/2−γ /2
(n)), which shrinks to 0 as n → ∞. We conclude

that hypotheses (i) and (ii) hold for any γ > 1 provided (12) holds.
For hypothesis (iii) in Theorem 11, we again check the determin-
istic inequality in (13). Since sin−1(x) ≈ x for small x, we see that

the left hand side of (13) grows asymptotically like log−1/2+γ /2
(n),

while the right hand side grows like log(n)/ log(log−1/2+γ /2
(n)).

We find that γ ≥ 3 is sufficient to ensure that log−1/2+γ /2
(n)

� log(n)/ log(log−1/2+γ /2
(n)), and the statement of the theorem

then follows by applying Theorem 11. �

C. Asymptotic bounds to derive asymptotic
statements

Next, we turn to the stronger asymptotic probability bounds.
There are many potentially useful asymptotic bounds in the work
of Füredi and Komlós,25 Vu,26 Feige and Ofek,37 and Lei and
Rinaldo.38 Taken together, this literature shows that with high prob-
ability, we have ‖1A‖ = O

(√
np
)

(see Theorem 5.2 in Ref. 38) and

‖1L‖ = O
(√

np(1 − p)
)

(see Ref. 37). By the same argument as in
the proof of Theorem 12, but with these stronger probability bounds,
we arrive at our main result.

Theorem 13. An Erdős–Rényi graph of size n is globally
synchronizing with probability> 1 − 4/n provided that

p � log2
(n)/n.

D. Using explicit bounds and optimizing with a
computer

We now return to using the explicit bounds in (12) and aim
to optimize our amplification argument using a computer. For a
given n, we find that one can significantly improve the range of
p for which the corresponding Erdős–Rényi graph is globally syn-
chronizing (see Table I). Our computer program can be turned
into a proof, and thus, for p above the thresholds in Table I, the
Erdős–Rényi networks are globally synchronizing with probability
> 1 − 4/n. However, writing the proofs down is unwieldy since the
program works with bounds on |Cφ | for 1000 different values of φ
and iteratively refines those bounds 100 000 times over.

By starting with ρ1 = 0 and ρ2 = 0, one can alternate between
(4) and (7)—in an iterative fashion—to obtain a lower bound on ρ1.
The lower bound on ρ1 can be substituted in (9) to give initial upper
bounds on |Cφ | for 0 ≤ φ ≤ π/2. One can then use Corollary 9
to progressively improve the bounds on |Cφ | for 0 ≤ φ ≤ π/2.
(Technically, we are using a slight strengthening of Corollary 9,
where we redo the proof keeping all the inequalities as tight as possi-
ble. However, using Corollary 9 gives extremely similar results.) To
do so, one selects 0 < α < β < π/2 and attempts to apply Corollary
9. If the application of Corollary 9 is successful, then one also
has |Cφ | ≤ |Cβ | for β ≤ φ ≤ π/2. Since |Cφ | is integer-valued, any

TABLE I. The values of p in the Erdős–Rényi random graph model for which we can

prove global synchrony for n= 104, 105, 106, and 107 with probability >1− 4/n. We

used a computer to recursively apply inequalities in our paper to obtain refined bounds

on |Cπ/2|. We include this table to demonstrate that our results are meaningful for

Erdős–Rényi graphs of finite, practical size. It is possible that these lower bounds on

p can be improved by careful optimizations.

n 104 105 106 107

p >0.332 37 >0.071 68 >0.011 17 >0.001 57

upper bound that is < 1 implies that Cφ is empty. We repeat this
procedure 100 000 times to refine the upper bounds on |Cφ | for
0 ≤ φ ≤ π/2. If at any point we have |Cπ/2| < 1, then we conclude
that the Erdős–Rényi graph is globally synchronizing with proba-
bility > 1 − 4/n. In Table I, we used the explicit value of f(n, p)

= 2
√

n log(n) p(1 − p)+ 4 log(n)/3 to bound the spectral norms of
1A and1L.

There are several further improvements to our computer pro-
gram that we tried: (1) Using stronger probability bounds25,26,37,38

for ‖1A‖; (2) using Lemma 7 instead of Lemma 8, and (3) doing
additional optimizations to improve the upper bounds for |Cφ |. For
example, by selecting triples 0 < α < β1 < β2 < π/2 and proving
a generalization of Corollary 9, we get bounds for |Cβ1 | in terms of
|Cα| and |Cβ2 | and bounds for |Cβ2 | in terms of |Cα| and |Cβ1 |. There
are similar generalizations for more than three angles. For exam-
ple, when n = 1020, using Lemma 8, we can only show that p > 1.58
× 10−15 guarantees that an Erdős–Rényi graph is globally synchro-
nizing with high probability, but with these extra improvements, we
find that p > 3.50 × 10−16 suffices. These improvements also pro-
vide good evidence—but not a proof—that Erdős–Rényi networks
with p � log(n)/n globally synchronize with high probability as
n → ∞.

VII. DISCUSSION

We have demonstrated how spectral properties of a graph’s
adjacency and graph Laplacian matrix can be used to understand
the global synchrony of a Kuramoto model with identical oscilla-
tors coupled according to a network. For Erdős–Rényi graphs, we
prove that p � log2

(n)/n is sufficient to ensure global synchrony
with high probability as n → ∞. As conjectured by Ling et al.,18 we
also believe that the global synchrony threshold is close to the con-
nectivity threshold of p ∼ log(n)/n. With the aid of a computer and
Lemma 7, we have convincing evidence that Erdős–Rényi networks
with p � log(n)/n are globally synchronizing with high probability
as n → ∞, and it is a future challenge to write down a formal proof.
While Sec. VI focuses on Erdős–Rényi graphs, most of our analysis
applies to any network, and we hope that it can deliver intriguing
results for other random graph models.

ACKNOWLEDGMENTS

This research was supported by the Simons Foundation grant
(No. 713557) (M.K.), the NSF grants (Nos. DMS-1513179 and CCF-
1522054) (S.H.S.), and the NSF grants (Nos. DMS-1818757, DMS-
1952757, and DMS-2045646) (A.T.). We thank Lionel Levine and

Chaos 32, 093119 (2022); doi: 10.1063/5.0090443 32, 093119-9

Published under an exclusive license by AIP Publishing

https://aip.scitation.org/journal/cha


Chaos ARTICLE scitation.org/journal/cha

Mikael de la Salle on MathOverFlow for references on bounding
‖1A‖ and ‖1L‖ for Erdős–Rényi graphs.
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