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Abstract
Seasonal influenza presents an ongoing challenge to public health. The rapid evolu-
tion of the flu virus necessitates annual vaccination campaigns, but the decision to
get vaccinated or not in a given year is largely voluntary, at least in the USA, and
many people decide against it. In some early attempts to model these yearly flu vac-
cine decisions, it was often assumed that individuals behave rationally, and do so with
perfect information—assumptions that allowed the techniques of classical economics
and game theory to be applied. However, these assumptions are not fully supported by
the emerging empirical evidence about human decision-making behavior in this con-
text. We develop a simple model of coupled disease spread and vaccination dynamics
that instead incorporates experimental observations from social psychology to model
annual vaccine decision-making more realistically. We investigate population-level
effects of these new decision-making assumptions, with the goal of understanding
whether the population can self-organize into a state of herd immunity, and if so, under
what conditions. Our model agrees with the established results while also revealing
more subtle population-level behavior, including biennial oscillations about the herd
immunity threshold.

Keywords Seasonal influenza · Vaccination · Decision-making · Social psychology ·
SIR model

1 Introduction

Annual influenza epidemics are a significant public health challenge, with up to
650,000 individuals dying from respiratory diseases associated with the flu each year
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(World Health Organization 2017). In the USA alone, the total economic burden of
seasonal influenza, including direct medical costs and lost earnings due to illness or
death, has been estimated as $26.8 billion annually (Molinari et al. 2007).

One of the main challenges of controlling seasonal influenza spread is that the
viruses evolve quickly (on the same time scale as the annual epidemics), with multiple
strains circulating concurrently. A key adaptation mechanism, antigenic drift, gives
rise to new influenza strains by randomly changing segments of viral surface proteins.
Given that a host’s immune system uses these surface proteins to identify the virus so
that it may be neutralized (Taubenberger and Kash 2010), antigenic drift thus acts as
an evolutionary countermeasure. It helps the flu evade the immune system and thereby
promotes its spread through the host population.

The rapid evolution of the flu results in the constant threat of a pandemic, and it
also makes it challenging to develop effective, long-lasting vaccines. The seasonal flu
vaccine is updated every year to protect against the strains that seem to pose the largest
upcoming threat. Seasonal influenza vaccination is largely voluntary in the USA, so
individuals must decide whether or not to vaccinate each year.

For many people, this decision is not easy. It involves many quantities that are
effectively impossible for an individual to estimate accurately, such as their likelihood
of being vaccinated successfully, the probability of an adverse reaction to the vaccine,
as well as their increased risk of catching the flu by foregoing the vaccine. Yet although
the decision may be difficult at an individual level, at a societal level the benefits of
vaccinating can be immense; if a critical mass of individuals choose to immunize
themselves, “herd immunity” can be achieved. In this desirable state, the density of
susceptible individuals is so low that an infection chain cannot be sustained and so an
epidemic cannot occur (Fine 1993).

Somewhat paradoxically, the possibility of achieving herd immunity makes an
individual’s decision to vaccinate or not even more complex, at least when viewed
through the lens of classical game theory (wherein agents are assumed to be purely
self-interested, and to behave rationally with perfect information about the situation at
hand). The issue is that as vaccination coverage increases, individuals are increasingly
incentivized not to vaccinate. Each personwould do better relying on others to bear any
burden associated with vaccination, while everyone reaps the benefits of widespread
immunity. Such “free-riding” logic makes it impossible to ever actually achieve herd
immunity with rational hosts.

The free-riding problem is common in (though not exclusive to) models where
agents rationally weigh a delayed collective group benefit against immediate individ-
ual costs.1 Individuals are assumed to make decisions by selecting the strategy that
maximizes an objective, individual payoff function, as prescribed by classical eco-
nomics (Hardin 2013). Some early models of voluntary vaccination decisions involve
such assumptions and inevitably yield agents that utilize free-riding logic, which pre-
cludes herd immunity (Geoffard and Philipson 1997; Bauch and Earn 2004).

However, amore recent empirical study suggests that free-riding logic is uncommon
when individuals specifically consider whether or not to get the seasonal influenza

1 Free-riding occurs when individuals are less likely to get vaccinated if they observe reduced disease
prevalence, whether or not their vaccination decision is made “rationally.”
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vaccine (Parker et al. 2013). In fact, this study finds that the majority of individuals
surveyed do not account for the vaccination decisions of others whenmaking their own
decision. Nevertheless, despite increasing evidence that assumptions from classical
economics may not appropriately capture human behavior in the context of infectious
disease spread, some behavior-diseasemodels continue to be built on such foundations
(Verelst et al. 2016).

Other studies have challenged these assumptions by replacing themwith those from
behavioral economics, which leverages social psychology in its models of human
decision-making. Voinson et al. (2015) develop a behavior-disease model that incor-
porates cognitive biases and differing vaccine opinions among individuals to study
vaccination coverage over time. Oraby and Bauch (2015) study pediatric acceptance
of vaccines by incorporating prospect theory into their disease model.

In this paper, we consider a simplified model for the interplay between annual
vaccination decisions and seasonal influenza spread, in which individual voluntary
vaccination decisions are informed by observed social psychology in this context.
Unlike previous work, we model repeated vaccination decisions to reflect the annual
vaccination decision necessitated by the rapid evolution of influenza viruses.We inves-
tigate population-level effects of these new decision-making assumptions, with the
goal of understanding whether the population can self-organize into a state of herd
immunity, and if so, under what conditions. Despite our model’s idealized nature,
we find that its results align with those utilizing assumptions based on classical eco-
nomics, although our model also predicts more nuanced population-level behaviors,
such as oscillations in and out of herd immunity on a biennial basis.

2 Conceptual Model

Decision theory and social psychology suggest that, in general, individuals tend to use
heuristics, or rules of thumb, rather than a “rational” cost-benefit analysis in complex
decision-making (Tversky and Kahneman 1974). Moreover, decision-making tends to
obey the law of inertia: choices generally remain unchanged but are sensitive to both
small nudges and unfavorable resulting outcomes (Thaler and Sunstein 2009). Our
model is based on both of these ideas.

For simplicity, assume that eachyear, an individual chooseswhether or not to receive
the seasonal influenza vaccine based solely on evaluating their most recent outcome
with both the vaccine and the disease. The vaccine carries a cost, or risk, of adverse
reaction, which can be interpreted as a cost to an individual’s health due to vaccine
side effects (morbidity), a direct economic cost from paying for the vaccine, and/or
an indirect economic cost such as taking unpaid leave from work to get vaccinated. In
what follows, we will interpret vaccine cost as morbidity, but the modeling framework
is flexible enough to accommodate other interpretations. There is also some probability
that vaccination successfully confers immunity upon the recipient.

Before we present the model in detail in Sect. 3, let us first describe it intuitively.
In any given year, individuals make the decision of whether or not to vaccinate, then
follow throughwith their choice, and then the flu season occurs. The epidemic resolves
itself, each individual assesses their personal outcome from the past year and then
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Fig. 1 All possible decisions and outcomes for an individual in year n, leading to different decisions for
year n + 1. Boxes with solid borders denote decisions and possible intermediate repercussions in year n.
Boxes with dashed and dotted borders denote final repercussions that determine the decision in year n + 1:
vaccinate (box with dashed border) or do not vaccinate (box with dotted border). In the model, pn is the
proportion of vaccinators in year n, r is the probability that the vaccine induces a cost, s is the probability that
the vaccine succeeds, φ is the final size of the epidemic (normalized as a fraction of the whole population),
and f (φ) = φ(spn)/(1−spn) is the fraction of the susceptible population that was infected in the epidemic
occurring in year n. A “bad reaction” results when one incurs a cost from the vaccine (e.g., vaccine side
effects on health, or economic burden). See Sect. 3 for model details

decides whether or not to get vaccinated prior to next year’s flu season. The decision
rule is a simple heuristic: If a person “won” last year (did not get sick and did not have
an adverse reaction to the vaccine), they stick to their vaccination choice and make the
same decision the following year. If they “lost” (got sick or had a bad reaction to the
vaccine), they are nudged to change their behavior (switch from vaccinating to not, or
vice versa) in hopes of eliciting a better outcome during the next flu season.

Figure 1 shows a schematic of the model. As an example of how to flow through
the chart, let us first consider an individual who has decided to vaccinate in a given
year (a decision made by a proportion pn of the population in year n). This decision
corresponds to the top left fork of the tree in Fig. 1. Next, suppose the vaccine suc-
ceeds in conferring immunity (which occurs with probability s), and the vaccine does
not elicit an adverse reaction (which occurs with probability 1 − r ). This favorable
outcome does not push the individual away from their default (winning) strategy of
vaccinating, so they decide to vaccinate again the following year; the vaccine seems
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to have succeeded in protecting them from the flu. (We are assuming here that only
the failure of the vaccine can be observed by the individual, and only if they happen
to get ill that year. Otherwise, the success of the vaccine is presumed, since there is
no evidence to the contrary.)

On the other hand, an individual may choose not to vaccinate in a given year (a
decision made by a proportion 1 − pn of the population, shown by following the top
right fork in Fig. 1). If such an individual then happens to contract the flu (which occurs
with a probability that we will calculate below), this non-vaccinating individual’s
choice was a “losing” strategy, and so they decide to vaccinate the following year.
Various other paths through the tree can be understood similarly.

In the next section, we write down the governing equations for our model.We begin
by recalling some standard results for a simple epidemiological model and then couple
that model to a social psychological model for individual vaccination decisions.

3 Mathematical Model

3.1 Epidemic Model

We choose the susceptible–infected–removed (SIR) model of infectious disease
dynamics (Kermack and McKendrick 1927), both because it is a well-established
epidemiological model and because there exists an analytical expression for the final
size of epidemics predicted by the model. The SIR model is adequate for modeling
each annual influenza outbreak individually, though we note that a more realistic flu
model could be substituted into our vaccination coverage model, provided that the
final size could at least be approximated numerically.

Suppose S(t) and I (t) represent proportions of a population that are susceptible and
infected, respectively, at a time t . Infected individuals are assumed to be immediately
infectious; there is no latency period in this model. There may also be individuals that
are removed from the infection process as they have already recovered from the illness
(denoted by proportion R(t)), but since we assume this disease propagates in a closed
population, we have R(t) = 1 − S(t) − I (t), which means we do not need to track
the removed individuals explicitly.

The SIR model is defined by a set of two coupled, nonlinear, ordinary differential
equations:

dS

dt
= −βSI , (1a)

dI

dt
= βSI − γ I , (1b)

where β is the disease transmission rate and γ is the disease recovery rate. The derived
quantityR0 = β/γ is the basic reproduction number of the disease; it gives the average
number of secondary cases generated by an infectious individual in a fully susceptible
population over the course of their illness.
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In our model, we assume the initial conditions

S(0) = 1 − sp, 0 < I (0) << 1, R(0) = sp (2)

to incorporate a vaccine uptake level at proportion p with vaccine efficacy s.

3.2 Final Size of the Epidemic

For this model, one can derive an implicit equation for the final size of the epidemic
φ(x), where x is the proportion initially immune to the disease (Ma and Earn 2006):

φ(x) = (1 − x)(1 − e−R0φ(x)). (3)

The solution to Eq. 3 can be written in terms of the principal branch of the product
log function (i.e., the Lambert W-function), denoted by W [·]:

φ(x) = 1 − x + 1

R0
W

[
−R0(1 − x)e−R0(1−x)

]
(4)

This expression for the final size of the yearly influenza epidemic is used later in
Eq. 7 to complete the model.

3.3 Critical Vaccination Threshold for Herd Immunity

An epidemic cannot be sustained if the average number of secondary cases provoked
by an infected individual in the population is below one. (Since this infected individ-
ual cannot even replace themselves in the infection chain, let alone generate further
infections.) In other words, for the population to achieve herd immunity, the effective
reproduction number (the basic reproduction number times the proportion currently
susceptible),Reff = R0(1−sp), must be driven below 1. Thus the critical vaccination
threshold, pcrit , satisfies the equation R0(1 − spcrit) = 1, and so

pcrit = 1

s

(
1 − 1

R0

)
. (5)

3.4 EstimatingR0 for Seasonal Influenza

Estimates of R0 vary depending on year, location, and influenza subtype since the
basic reproduction number depends not only on the immunological properties of the
virus, but also on the social behavior of the host population. A systematic review by
Biggerstaff et al. (2014) catalogues many estimates of both the basic and effective
reproduction numbers of pandemic, zoonotic, and seasonal influenza.
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The most relevant estimates for our study are those for the 1976–1981 outbreak of
H1N1/H3N2/B in the USA. Two studies were performed to estimate the basic repro-
duction number in this outbreak, and they both use serologically confirmed infections
for their data, which make these estimates particularly reliable.2 One study found
R0 = 1.70 (Ferguson et al. 2006), while another found R0 = 1.16 (Britton and
Becker 2000) for this outbreak. We average these two values and take R0 = 1.4 as
a reasonable estimate of the basic reproduction number for seasonal influenza in a
modern US population. While the model results presented in the main text all use
R0 = 1.4, we have explored a range ofR0 values in Appendix B (Figures S1-S2).

3.5 Vaccination DecisionModel

Let pn be the proportion of the population that vaccinates in year n. Our goal in this
section is to derive a discrete map for the vaccine coverage pn+1 in year n + 1.

In the following argument, we assume the vaccine is fully quantified by its cost and
its efficacy. For the purposes of this discussion, we will think of the cost in terms of
vaccine morbidity (side effects to immunization), though the cost could be interpreted
as an economic one (for instance, if individuals have to pay for the vaccine or take
unpaid time off of work to obtain it). We denote the cost, or probability of vaccine
morbidity, by 0 ≤ r ≤ 1, and the vaccine efficacy by 0 ≤ s ≤ 1.

To ease the notation in the derivation below, it proves useful to introduce a function
f (φ) to denote the proportion of all susceptible individuals who get sick during an
epidemic of size φ. To calculate f in terms of φ, note that the fraction of the total
population that is susceptible in year n is 1 − spn . Of these individuals, a fraction
f · (1 − spn) will get infected, by definition of f . But since this fraction also equals
the number of infected individuals divided by the total population, it simply equals φ,
the fractional size of the epidemic, as given by Eq. 4. Therefore, φ = f · (1 − spn),
from which we conclude that

f (φ(spn)) = φ(spn)

1 − spn
. (6)

In other words, the proportion of susceptible individuals who end up infected is simply
the final size of the epidemic renormalized to the susceptible population.

With these preliminaries out of the way, we can deduce the vaccine coverage rate
pn+1 in year n + 1 by considering all possible outcomes for an individual based on
their choice of whether or not to vaccinate in year n and by counting the proportion
of the population flowing down each of the branches in Fig. 1 into vaccinating in year
n+1.We assume that every individual is susceptible to that year’s flu strain at the start
of each flu season, so everyone must make the choice of whether or not to vaccinate
each year.

First consider the group of non-vaccinating individuals, whichmake up a proportion
1 − pn of the population. These individuals will only vaccinate in year n + 1 if they

2 It is difficult to distinguish seasonal influenza from other upper respiratory tract infections by symptoms
alone, so studies based purely on reported symptoms may not yield a good estimate for theR0 of seasonal
influenza. Instead, studies based on serologically confirmed infections are more reliable.
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get sick in year n, an event that occurs to a fraction f = f (φ(spn)) of them. Thus,
the equation for pn+1 will include a term f · (1 − pn), which accounts for those that
did not vaccinate and got sick.

For vaccinating individuals, either the vaccine succeeds, with probability s, or it
does not, with probability 1 − s. If the vaccine succeeds, there is still an independent
chance that the individual will have side effects that discourage them from vaccinating
the following year, which occurs at the vaccine morbidity rate, r . However, those for
whom the vaccine successfully conferred immunity and provoked no side effects will
once again vaccinate the following year since they have no reason to change strategy,
which adds the term (1 − r) · s · pn to the equation for pn+1.

If the vaccine fails for an individual (with probability 1− s), but did not cause any
discouraging side effects (with probability 1−r ), the only reason they would continue
to vaccinate would be if they thought the vaccine succeeded; that is, they happened not
to get sick, even though they were not successfully immunized. A proportion 1 − f
of susceptible individuals avoid infection, so the final term of the equation for pn+1
is (1 − f ) · (1 − r) · (1 − s) · pn .

Putting all of these contributions together, we find that the discrete map for pn+1,
the proportion of the population vaccinating in year n + 1, is given by

pn+1 = φ(spn)

1 − spn
(1 − pn) + (1 − r)spn +

[
1 − φ(spn)

1 − spn

]
(1 − r)(1 − s)pn, (7)

where the functionφ is given byEq. 4. Thismap is biologically sensible; if 0 ≤ pn ≤ 1,
one can check that 0 ≤ pn+1 ≤ 1. Hence, as long as the initial condition is sensible
(0 ≤ p0 ≤ 1), all subsequent iterations remain in [0, 1].

4 Results

4.1 Model Predictions

The predictions of the model depend on the relative magnitudes of its parameters: the
vaccine parameters (morbidity or cost, r , and efficacy, s) and the disease parameter,R0.
The basic reproduction numberR0 gives a sense of the “infectiousness” of the disease;
in our analysis, we estimate the basic reproduction number of seasonal influenza in
a modern US population to be R0 = 1.4 (see Sect. 3 for details), indicating that
a person infected with seasonal influenza will infect on average 1.4 other people in
a fully susceptible population. For the vaccine parameters, we note that seasonal flu
vaccines havevery lowmorbidity (Centers forDiseaseControl 2016), and their efficacy
varies from low to moderate (Osterholm et al. 2012; World Health Organization 2015;
Centers for Disease Control 2017).

The best case would be for the population to self-organize into herd immunity,
by driving the proportion of the population vaccinated above the critical threshold,
pcrit . When vaccine coverage meets or exceeds this threshold, no epidemic occurs.
One might expect the model to self-organize into herd immunity if the population can
collectively make use of the memory of the previous flu seasons in a lasting way.
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Fig. 2 Long-term model behavior forR0 = 1.4 and p0 = 0, as a function of vaccine
morbidity(0 < r ≤ 1)and vaccine efficacy (0 ≤ s ≤ 1). Behavior in these regions of parameter space
was deduced by iterating the vaccine coverage map (Eq. 7) numerically until it converged to a fixed point,
i.e., , until the discrepancy between successive iterations fell below a tolerance of 10−8. (White points are
parameter values for which the simulation was not able to converge to a solution before the maximum
number of iterations was reached.) Themajority of parameter space is dominated by convergence to vaccine
levels below the herd immunity threshold, which results in no lasting herd immunity (region I: the system
converges to a period 1 fixed point, p∗, that satisfies p∗ < pcrit ). For higher vaccine efficacy, there is a
possibility of achieving herd immunity every other year, provided that vaccine morbidity r is sufficiently
large (region II: the system converges to a period-2 fixed point, (p∗

1 , p∗
2)). In this regime, the system

oscillates between sub-optimal vaccine coverage (p∗
1 < pcrit ) and herd immunity with overvaccination

(p∗
2 > pcrit ): see Fig. 3A

To our disappointment, we find that if there is any cost to the vaccine (r > 0), our
model cannot self-organize into lasting herd immunity. There are two main regions
of parameter space in this case (Fig. 2): a large region where the system eventually
converges to vaccine levels below the herd immunity threshold (region I), and a smaller
region where the system oscillates in and out of the herd immunity region on a yearly
basis (region II).

Note that where game-theoretic models always predict free-riding that make herd
immunity impossible to achieve in the long term, our model predicts that it is possible
for the population to achieve herd immunity every other year, even if there is a cost
and moderate failure rate to the vaccine. This oscillatory behavior (Fig. 3A) is the
result of the system converging to a state where it alternates between the population
bearing a significant disease burden (a large epidemic in the previous year encouraging
vaccination in the following year) and the population bearing a significant vaccine cost
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A B

Fig. 3 Vaccine coverage level in the regime where herd immunity eventually occurs every other year
(R0 = 1.4, r = 0.8, s = 0.7). Panel A Vaccine coverage level over time. The system converges to a state
where the vaccine coverage level oscillates asymmetrically about the critical vaccination threshold, p =
pcrit , denoted by the dashed line. Panel B Dependence of the next year’s vaccine coverage level, pn+1, on
that of the current year, pn , for this parameter set

Fig. 4 Number of years spent in the herd immunity interval (p > pcrit) during the transient period in
the regime of no lasting herd immunity (R0 = 1.4, p0 = 0). As the vaccine improves in quality (either
vaccine morbidity decreases, or vaccine efficacy increases), the time period spent in the herd immunity
interval lengthens. The dependence of the number of years spent in the herd immunity interval on the initial
condition, p0, is explored in Figure S3 (Appendix B)

(which incentivizes non-vaccination en masse in the following year). When a vaccine
has a moderate-to-high efficacy, and a sufficiently high cost, the system is constantly
balancing an illness-vaccine cost trade off due to the built-in short term memory of
individuals in the model.

Even in the case where there is no lasting herd immunity, the system may never-
theless spend a significant length of time in the herd immunity interval (Fig. 4) before
eventually dropping out and converging to a stable point that is below the herd immu-
nity threshold. This effect is especially pronounced when vaccine morbidity is low,
and even when the vaccine is only moderately efficacious, both of which are properties
of the real seasonal influenza vaccines. The transient herd immunity period increases
as vaccine efficacy increases and/or vaccine cost decreases.
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Fig. 5 Long-term model behavior with no vaccine cost (r = 0) forR0 = 1.4. Behavior in these regions of
parameter space was deduced using the analytical criteria detailed in Appendix A. There is still a regionwith
no lasting herd immunity (region I: the systemconverges to a fixed point, p∗, that satisfies p∗ < pcrit); in this
regime, the system never achieves herd immunity (pn < pcrit for all n ≥ 0). However, the system exhibits
self-organized herd immunity when vaccine efficacy is sufficiently high, through a variety of mechanisms.
The system may start (and therefore stay) in the herd immunity interval (region II: p0 ≥ pcrit), it may
converge to “inefficient” lasting herd immunity (region III: sustained overvaccination), or it may converge
to “optimal” lasting herd immunity (region IV: vaccination approaching the herd immunity threshold pcrit )

When there is no cost to the vaccine (r = 0; Fig. 5), the systemcan self-organize into
herd immunity in three ways (regions whose label contains “lasting herd immunity”),
in addition to yielding no lasting herd immunity as before (region I). The system
may start in the herd immunity region and therefore stay in it indefinitely (region
II), since there is no vaccine cost to drive the coverage level down. Alternatively, the
systemmay converge to lasting herd immunity which is either inefficient as it involves
overvaccination (region III), or it may converge to optimal, lasting herd immunity
precisely at the herd immunity threshold (region IV).

The mechanisms that drive the population to either inefficient or optimal self-
organized herd immunity are markedly different (Fig. 6A). In the case of sustained
overvaccination, the population starts at a relatively low level of vaccination initially
(lighter curve). A substantial epidemic occurs in the first year, encouraging a large
proportion of individuals to vaccinate in the following year: too many, in fact. The
population springs itself into the herd immunity interval after that first year, and since
there is no opposing force pushing vaccination coverage down, overvaccination con-
tinues indefinitely. In the case of optimal vaccination, the population may also start
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A B

Fig. 6 Vaccine coverage level with no vaccine cost (r = 0) in the regime of self-organized herd immunity
(R0 = 1.4, s = 0.6). Panel A Vaccine coverage level over time. If the initial population level is too low
(lighter curve), the population springs into the interior of the herd immunity interval, [pcrit, 1], which results
in sustained overvaccination. If the population initially vaccinates at a more moderate level (darker curve),
vaccine coverage converges to the optimal herd immunity threshold, pcrit , in an asymptotic way. Panel
B Dependence of the next year’s vaccine coverage level, pn+1, on that of the current year, pn , for this
parameter set

at a relatively low level of initial vaccination, but the first epidemic sustained is not
as devastating as in the previous case (darker curve). A moderate proportion of the
population is affected by the disease and switches to vaccinating in the following year.
The epidemic sustained in this next year is not as large as the one before it (thanks to
the increase in vaccination) and encourages another (smaller) group of individuals to
switch to vaccinating next year. This process gradually guides the population to the
herd immunity threshold, eventually achieving the optimal level of vaccination.

5 Discussion

While the simple model studied here cannot self-organize into sustained herd immu-
nity when there is any cost to the vaccine, it may still achieve herd immunity every
other year. When the vaccine efficacy is sufficiently large for a given cost, there is an
ongoing battle between the disease and the vaccine. If the population undervaccinates
in one year, it undergoes an epidemic which drives the system to overvaccinate in the
following year, thanks to the short-term memory of individuals in the model. A non-
trivial proportion of the population then bears some cost associated with the vaccine,
which discourages those individuals from getting vaccinated the following year, driv-
ing the system back down to an undervaccinated state, and the cycle repeats. Similar
biennial behavior driven by individual short-term memory was previously reported in
another behavior-disease model (Wells and Bauch 2012), though only in the transient
dynamics. In our case, the biennial cycle occurs asymptotically.

Provided the amplitude of this (asymmetric) oscillation about the herd immunity
threshold is sufficiently small, this regime effectively achieves herd immunity as any
epidemic that occurs is relatively small. While the goal of disease eradication has not
strictly been achieved, the resulting epidemics are so small in the model that a bit
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of stochasticity may be enough to push the circulating flu strain into extinction (in a
closed population).

Although this promising biannual behavior is possible, the region of no lasting
herd immunity dominates vaccine parameter space, particularly for vaccine morbid-
ity and efficacies that are realistic for the seasonal influenza vaccine (morbidity near
zero, efficacy around 50%) (Fig. 2). The system may not drive itself to herd immunity
asymptotically for these types of vaccines, but a significant length of time is spent in
the herd immunity interval during the transient period (Fig. 4). This effect opens the
door for other public health interventions (e.g., vaccination- and disease-awareness
campaigns) which have not been included in the model but may help push the pop-
ulation into lasting herd immunity. Increases to the length of time spent in the herd
immunity interval can be achieved by improving the vaccine, by increasing vaccine
efficacy, and/or by decreasing vaccine morbidity.

In the case where there is no morbidity to the vaccine, the system can achieve self-
organized herd immunity that is either inefficient (due to overvaccination) or optimal
(at the critical vaccination threshold). If the population initially vaccinates at a very low
level, it undergoes a large epidemic, and the following year, the population overreacts,
propelling itself into the herd immunity interval much like a diver on a springboard.
Overvaccination continues since there is no cost to the vaccine, and thus, no force push-
ing population vaccine coverage down. On the other hand, moderate initial vaccination
leads the population to converge to the optimal vaccination level at the herd immu-
nity threshold. In this case, the population gradually learns from year to year through
successively smaller epidemics. Each such epidemic recruits smaller and smaller pro-
portions of the population to vaccinate until herd immunity is achieved. Notably,
this result occurs even with a moderately effective vaccine, like that of real seasonal
influenza. This result is particularly striking as it follows from individuals seeking to
optimize their own outcomes, yet they also collectively achieve the social optimum.

While it may not be realistic to assume that a vaccine can be considered costless to
an individual, this extreme case illustrates that if a vaccine can be perceived as costless,
the population can self-organize into sustained herd immunity. Such a result is still
possible even if the vaccine is only moderately efficacious and even if the population
does not immediately take to getting vaccinated.

6 Conclusion

We have presented an intentionally simple model for seasonal influenza vaccination
that makes use of the established results in social psychology to inform individual
vaccine decision-making, giving rise to both interesting and interpretable dynamics.

In the case where there is some cost to the vaccine, our model still predicts regimes
where vaccination coverage is below the herd immunity threshold in the long term,
which agrees with previous models. However, our model also predicts new regions
where herd immunity is achieved every other year: a result of the population oscillating
between vaccine-based and disease-based morbidity. When we further assume that
the vaccine has no cost, it is still possible for the model to predict no lasting herd
immunity. We also observe convergence to enduring herd immunity, either at the
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optimal level, where the population vaccinates exactly enough to reach this protected
state, or inefficiently, where the population overvaccinates.

Our disease-behavior model is deliberately simple as a first step, to focus on the
effect of incorporating a more realistic decision model on top of a well-established
model for disease spread. Future work should focus on making this model more real-
istic and validating it with appropriate data.

Currently, both the decision-making and disease processes are deterministic; a
stochastic version of this model in either respect would be closer to reality. Since
agents only rely on the current state of the system to inform their next decision, our
model could easily be cast in a Markov chain framework. Modeling the disease spread
on a socio-spatial network would also provide greater realism, by mimicking the way
hosts interact and thus spread infectious diseases like the flu (Chao et al. 2010).

The vaccine decision model could also be extended to include social norms (Oraby
et al. 2014), especially prosocial motives (Li et al. 2016), which may play a significant
role in real-life vaccination decisions. Exposure to expert opinions on vaccination
(Chapman and Coups 1999), such as those of primary care physicians, as well as
non-expert opinions, like misinformation (Loomba et al. 2021), are also effects worth
incorporating in future models, depending on the disease and social context.

Seasonal influenza is an immensely complex phenomenon, and we have not
accounted for issues such as that of multiple concurrently circulating strains (Prosper
et al. 2011), cross-reactivity of vaccines between strains (Iorio et al. 2012; Moa et al.
2016), naturally-acquired immunity carried over from previous flu seasons (Krammer
2019; Lee et al. 2019), or waning vaccine immunity over the course of the flu season
(Rambhia and Rambhia 2018). Such additions to the model would also serve to make
it more realistic.
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Appendix

A. Analytical Criteria for Long-Term Behavior in Model with No Cost
(r = 0)

Figure 5 can be produced by directly iterating the map to numerical convergence, but
it can be produced equivalently using analytical criteria based on the existence and
location of fixed points.
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When r = 0, the model map (Eq. 7) reduces to

pn+1 = φ(spn)

1 − spn
(1 − pn) + spn +

[
1 − φ(spn)

1 − spn

]
(1 − s)pn . (A 1)

Fixed points, p, of this map must satisfy

p = φ(sp)

1 − sp
(1 − p) + sp +

[
1 − φ(sp)

1 − sp

]
(1 − s)p, (A 2)

which simplifies to

φ(sp)

1 − sp
(p(2 − s) − 1) = 0. (A 3)

Equation A 3 is satisfied when either (i) φ(sp) = 0 or (ii) p(2 − s) − 1 = 0.
Case (i) is satisfied by any p ∈ [pcrit, 1] since φ(sp) = 0 if and only if p ≥

pcrit . Provided pcrit < 1, the “herd immunity” interval [pcrit, 1] is an invariant set of
neutrally stable fixed points that exists in the map’s domain of [0, 1]. In other words,
if pn ∈ [pcrit, 1] for any n, the trajectory is then trapped in the herd immunity interval
for all remaining time (precisely at the value pn).

Region II in Fig. 5 is given by all (p0, s) that satisfy p0 ≥ pcrit = 1
s

(
1 − 1

R0

)
.

In other words, the population starts at herd immunity and remains at herd immunity
indefinitely. Region III is given by all (p0, s) such that p0 < pcrit but p1 ≥ pcrit .
This region represents populations whose first epidemic was so large that it propels
the population into herd immunity immediately after the first year.

Case (ii) is satisfied by p∗ = 1/(2 − s). This fixed point is disjoint from the herd
immunity interval when

p∗ < pcrit, (A 4)

1

2 − s
<

1

s

(
1 − 1

R0

)
, (A 5)

s < 1 − 1

2R0 − 1
. (A 6)

Let us define scrit = 1− 1/(2R0 − 1); when s ≥ scrit, the fixed point p∗ = 1/(2− s)
disappears into the herd immunity interval.

Numerical simulations suggest that p∗ is stable when it exists disjoint from the herd
immunity interval (i.e., when s < scrit), with the basin of attraction being [0, pcrit);
such trajectories will converge to p∗ as n → ∞. Region I is given by all (p0, s) that
satisfy p0 < pcrit and s < scrit. In other words, vaccine coverage starts below the
herd immunity threshold and never surpasses it. Instead, vaccine coverage converges
to p∗ = 1/(2 − s) < pcrit .

Lastly, region IV is given by all (p0, s) with both p0 < pcrit and p1 < pcrit , but
also s ≥ scrit . In this case, the fixed point p = 1/(2 − s) does not exist distinct from
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the herd immunity interval, but also the first epidemic is not strong enough propel
vaccine coverage over the herd immunity threshold (p1 < pcrit). Under these condi-
tions, numerical simulations suggest that {p0, p1, . . .} is a monotonically increasing
sequence where each pn < pcrit , but limn→∞ pn = pcrit .
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